Supplementary Material

EXPERIMENTAL SECTION

Preparation of 2-Methoxy-4-(2, 6-diphenylpyridin-4-yl) phenol 1

3.0g of 4-hydroxy-3-methoxy benzaldehyde $(1.971 \times 10^{-2} \text{ mmol}; 1.0 \text{ equiv.}) 4.97 \text{ g}$ of acetophenone $(4.140 \times 10^{-2} \text{ mmol}; 2.0 \text{ equiv.})$ and 10g of NH₄OAc are dissolved $(4.140 \times 10^{-2} \text{ mmol}; 1.0 \text{ equiv.})$ in 50mL of acetic acid $(4.140 \times 10^{-2} \text{ mmol}; 2.0 \text{ equiv.})$ under refluxing condition for 3 h. to give 2-methoxy-4-(2, 6-diphenylpyridin-4-yl) phenol **1** in qualitative yield. Yield: 7.82g, (98%); Liquid; ¹H NMR (400 MHz, CDCl₃) δ = 3.98 (s, 3H), 7.09 (s, 1H), 7.11-7.24 (d, 2H), 7.44 (s, 2H), 7.96-8.24 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ = 56.1, 109.7, 115.2, 116.7, 120.5, 127.1, 128.5, 129.0, 133.1, 137.1, 146.9, 150.1, 157.4; MS: m/e: 353.14; Anal. Calcd for: C₂₄H₁₉NO₂: C: 81.55; H: 5.38; N: 3.96; Found: C: 81.48; H: 5.30; N: 3.88.

General Procedure of N-Alkylation Reaction

2-methoxy-4-(2, 6-diphenylpyridin-4-yl) phenol **1** (7.158 × 10^{-3} mmol; 1.0 equiv.) is treated with benzyl bromide/4nitro benzyl bromide (7.516 × 10^{-3} mmol; 1.05 equiv.) in the presence of 20 mL of dry acetonitrile under refluxing condition for 9-10 hours to give N-alkylated product of compound **2a/3a**.

2-Methoxy-4-(2, 6-diphenyl-I-methyl benzyl pyridiniumbromide-4-yl) phenol 2a

Yield: 3.77g, (97%); Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 3.94 (s, 3H), 4.52 (s, 2H), 6.08 (s, 1H), 6.96-7.12 (d, 2H), 7.39-7.51 (m, 5H) 7.49 (s, 2H), 7.76-8.01 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.0, 76.7, 110.1, 114.9, 119.8, 123.4, 127.4, 127.3, 128.4, 128.5, 129.0, 130.1, 132.5, 138.5, 139.4, 145.2, 148.4, 157.4; MS: m/e: 524.45; Anal. Calcd for: C₃₁H₂₆BrNO₂: C: 70.93; H: 4.95; N: 2.66; Found: C: 70.85; H: 4.87; N: 2.58.

2-Methoxy-4-(2, 6-diphenyl-l-methyl-4-nitrobenzylpyridiniumbromide-4-yl) phenol 3a

Yield: 5.44 g (98%); Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 3.90 (s, 3H), 4.49 (s, 2H), 6.93 (s, 1H), 7.13 (d, 2H), 7.47 (s, 2H), 7.51-7.55 (m, 4H), 7.99-8.16 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.1, 76.8, 109.0, 114.5, 115.0, 119.6, 127.3, 128.4, 128.5, 129.9, 132.6, 133.1, 138.4, 144.8, 145.3, 148.5, 151.9, 162.5; MS: m/e: 569.45; Anal. Calcd for: C₃₁H₂₅BrN₂O₄: C: 65.32; H: 4.39; N: 4.91; Found: C: 65.24; H: 4.31; N: 4.83.

General Procedure for Anion Exchange Reaction

Triaryl pyridinium bromide **2a/3a** (1.716 × 10^{-3} mmol; 1.0 equiv.) is treated with various counter anions containing inorganic salt such as NaBF₄, K₄PF₆, and LiCF₃SO₃ (1.801 × 10^{-3} mmol; 1.05 equiv.) in the presence of 20 mL of deionized water at room temperature with stirring for 2 hours to give anion exchange product in 92-94% yield. Both metallic bromide and triaryl pyridinium salts are soluble in water. So the separation is not easier. Under these circumstances we have used Soxhlet extraction for separation with dry THF for 1 h under refluxing condition and confirmed by aqueous AgNO₃.

2-Methoxy-4-(2, 6-diphenyl-I-methylbenzyl pyridinium hexafluorophosphate-4-yl) phenol 2b

Yield: 1.16g; (94%); Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 4.02 (s, 3H), 4.54 (s, 2H), 7.13 (s, 1H), 7.15-7.28 (d, 2H), 7.29-7.40 (m, 5H) 7.48 (s, 2H), 8.00-8.28 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.5, 65.0, 110.1, 115.6, 117.1, 120.9, 127.5, 127.7, 128.9, 129.0, 129.4, 130.5, 133.5, 137.5, 139.9, 147.3, 150.5, 157.8 ; MS: m/e: 563.14; Anal. Calcd for: C₂₉H₂₄F₆NO₂P: C: 61.79; H: 4.26; N: 2.48; Found: C: 61.71; H: 4.18; N: 2.40.

2-Methoxy-4-(2, 6-diphenyl-I-methylbenzyl pyridinium tetrafluoroborate-4-yl) phenol 2c

Yield: 1.01g; (92%); Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 4.01 (s, 3H), 4.53 (s, 2H), 7.12 (s, 1H), 7.14-7.27 (d, 2H), 7.28-7.39 (m, 5H) 7.47 (s, 2H), 7.99-8.27 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.4, 64.9, 110.0, 115.5, 117.0, 120.8, 127.4, 127.7, 128.8, 128.9, 129.3, 130.4, 133.5, 137.4, 139.8, 147.2, 150.4, 157.7; MS: m/e: 531.35; Anal. Calcd for: C₃₁H₂₆BF₄NO₂: C: 70.11; H: 4.61; N: 2.63; Found: C: 70.03; H: 4.53; N: 2.55.

2-Methoxy-4-(2, 6-diphenyl-I-methylbenzyl pyridinium trifluoromethanesulfonate-4-yl) phenol 2d

Yield: 0.95g; (80%); Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 4.00 (s, 3H), 4.52 (s, 2H), 7.11 (s, 1H), 7.13-7.26 (d, 2H), 7.27-7.38 (m, 5H) 7.46 (s, 2H), 7.98-8.26 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.3, 64.8, 109.9, 115.4, 116.9, 120.7, 127.3, 127.5, 128.7, 128.8, 129.2, 130.3, 133.3, 137.3, 139.6, 147.1, 150.3, 157.6; MS: m/e: 593.61; Anal. Calcd for: C₃₂H₂₆F₃NO₅S: C: 64.68; H: 4.37; N: 2.35; Found: C: 64.60; H: 4.29; N: 2.27.

2-Methoxy-4-(2, 6-diphenyl-I-methyl-4-nitrobenzyl pyridinium hexafluorophosphate-4-yl) phenol 3b

Yield: 1.25g; (87%); Liquid; ¹H NMR (400 MHz, CDCl₃); $\overline{\delta}$ = 4.09 (s, 3H), 4.73 (s, 2H), 7.15 (s, 1H), 7.17 (d, 2H), 7.51 (s, 2H), 7.52-7.71 (m, 4H), 8.02-8.31 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); $\overline{\delta}$ = 56.5, 77.0, 110.3, 115.9, 117.3, 121.2, 127.7, 128.0, 129.1, 129.7, 133.7, 135.4, 137.8, 142.6, 146.4, 150.9, 158.1, 162.7; MS: m/e: 634.51; Anal. Calcd for: C₃₁H₂₅F₆N₂O₄P: C: 58.62; H: 3.94; N: 4.41; Found: C: 58.54; H: 3.86; N: 4.33.

2-Methoxy-4-(2, 6-diphenyl-I-methyl-4-nitrobenzyl pyridinium tetrafluoroborate-4-yl) phenol 3c

Yield: 1.12 g; (93%); Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 4.08 (s, 3H), 4.72 (s, 2H), 7.14 (s, 1H), 7.30 (d, 2H), 7.50 (s, 2H), 7.51-7.70 (m, 4H), 8.01-8.30 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.4, 63.4, 110.2, 115.8, 117.2, 121.2, 127.7, 127.9, 129.0, 129.7, 133.7, 135.3, 137.7, 142.5, 146.3, 150.8, 160.0, 162.6; MS: m/e: 576.35; Anal. Calcd for: C₃₁H₂₅BF₄N₂O₄: C: 66.54; H: 4.33; N: 4.85; Found: C: 64.46; H: 4.25; N: 4.77.

2-Methoxy-4-(2, 6-diphenyl-I-methyl-4-nitrobenzyl pyridinium trifluoromethanesulfonate -4-yl) phenol 3d

Yield: 1.19 g; 92%; Liquid; ¹H NMR (400 MHz, CDCl₃); δ = 4.07 (s, 3H), 4.71 (s, 2H), 7.13 (s, 1H), 7.29 (d, 2H), 7.49 (s, 2H), 7.50-7.69 (m, 4H), 8.00-8.29 (m, 10H); ¹³C NMR (100 MHz, CDCl₃); δ = 56.3, 63.3, 110.2, 115.7, 117.1, 121.0, 127.5, 127.8, 128.9, 129.5, 133.5, 135.2, 137.6, 142.4, 146.2, 150.7, 157.9, 162.5; MS: m/e: 638.61; Anal. Calcd for: C₃₂H₂₅F₃N₂O₇S: C: 60.13; H: 3.91; N: 4.28; Found: C: 60.00; H: 3.82; N: 4.30.

General Procedure for one Pot Preparation of Quinoline Derivatives

Equal molar concentration of 5, 5-dimethylcyclohexadienone (3.856×10^{-3} mmol; 1.05 equiv.), ethylacetoacetate (4.049×10^{-3} mmol; 1.05 equiv.), substituted aryl aldehyde (3.672×10^{-3} mmol; 1.0 equiv.) and NH₄OAc (4.251×10^{-2} mmol; 1.05 equiv.), in the presence of 1.053 × 10^{-4} mmol CH₃CN with optimized catalyst concentration of triaryl pyridinium bromide **3a** (1.053×10^{-4} mmol) for 50 minutes under refluxtion to give quinoline derivative **4(a-d)** in 80-96%

Ethyl 1, 4, 5, 6, 7, 8-hexahdro-4-(4-hydroxyphenyl)-2, 7, 7-trimethyl-5-oxoquinoline-3-carboxylate 4a

Yield: 0.5g; (91%); Mp:230-232 0 C; ¹H NMR (400 MHz, DMSO-d₆): δ = 0.94 (s, 3H), 1.08 (s, 3H), 1.20 (t, 3H), 2.08-2.18 (m, 3H), 2.20-2.35 (m, 4H),4.07 (q, 2H), 4.98 (s, 1H), 5.62 (s, 1H), 6.65 (d, 2H), 7.16 (d, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 14.1, 18.1, 26.4, 29.1, 32.1, 34.7, 50.3, 104.0, 110.2, 114.4, 128.3, 138.4, 144.3, 144.3, 149.0, 155.1, 167.0, 194.3; MS: m/e: 355.43; Anal. Calcd for: C₂₁H₂₅NO₄: C: 70.96; H: 4.09; N: 3.94; Found: C: 70.90; H: 7.03; N: 3.93.

Ethyl 1, 4, 5, 6, 7, 8-hexahdro-4-(4-methoxyphenyl)-2, 7, 7-trimethyl-5-oxoquinoline-3-carboxylate 4b

Yield: 0.5g; (87%); Mp:203-205 0 C; ¹H NMR (400 MHz, DMSO-d₆): δ = 0.86 (s, 3H), 1.14 (t, 3H), 1.97 (d, 1H), 2.16 (d, 1H), 2.26 (s, 3H), 2.3 (s, 1H), 2.40 (d, 1H), 3.97 (q, 2H), 4.74 (s, 1H), 6.56 (d,2H), 6.93 (d, 2H) 8.98 (s, 1H) 9.07 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 14.1, 18.1, 26.4, 29.1, 32.1, 34.7, 50.3, 104.0, 110.2, 114.4, 128.3, 138.4, 144.3, 144.3, 149.0, 155.1, 167.0, 194.3; MS: m/e: 385.42; Anal. Calcd for: C₂₂H₂₇NO₅: C: 68.55; H: 7.06; N: 3.63; Found: C: 68.49; H: 7.00; N: 3.60.

Ethyl 1, 4, 5, 6, 7, 8-hexahdro-2, 7, 7-trimethyl -5-oxo-4-phenylquinoline-3-carboxylate 4c

Yield: 0.5 g; (90 %); Mp:220-222 0 C; ¹H NMR (400 MHz, DMSO-d₆): δ = 0.94 (s, 3H), 1.08 (s, 3H), 1.19 (t, 3H), 2.14-2.33 (m, 4H), 2.38 (s, 3H), 4.05 (q, 2H), 5.05 (s, 1H), 5.78 (s, 1H), 7.08-7.31 (m, 5H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 14.0, 18.0, 26.1, 29.0, 32.0, 34.3, 50.1, 104.2, 110.4, 114.2, 128.1, 138.2, 144.1, 144.6, 149.2, 155.5, 167.3, 194.1; MS: m/e: 339.43; Anal. Calcd for: C₂₁H₂₅NO₃: C: 74.31; H: 7.42; N: 4.13; Found: C: 74.57; H, 7.51; N, 4.06.

Ethyl 1, 4, 5, 6, 7, 8-hexahdro-2, 7, 7-trimethyl -4-(4-nitrophenyl) -5-oxoquinoline-3-carboxylate 4d

Yield: 0.5g; (85%); Mp:243-245 0 C; ¹H NMR (400 MHz, DMSO-d₆): δ = 0.92 (s, 3H), 1.09 (s, 3H), 1.24 (t, 3H), 2.13-2.37 (m, 4H), 2.40 (s, 3H), 4.07 (q, 2H), 5.18 (s, 1H), 6.72 (s, 1H), 7.51 (d, 2H), 8.10 (d, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 14.1, 18.1, 26.4, 29.1, 32.1, 34.7, 50.3, 104.0, 110.2, 114.4, 128.3, 138.4, 144.3, 144.3, 149.0, 155.1, 167.0, 194.3; MS: m/e: 384.43; Anal. Calcd for: C₂₁H₂₄N₂O₅: C: 65.61; H: 6.29; N: 7.29; Found: C: 65.55; H: 6.24; N: 7.28;

Ethyl 1, 4, 5, 6, 7, 8-hexahdro-2, 7, 7-trimethyl -4-(4-nitrophenyl) -5-oxoquinoline-3-carboxylate 4e

Yield: 0.5 g; (89 %); Mp: 175-177 0 C ; ¹H NMR (400 MHz, DMSO-d₆): δ = 0.94 (s, 3H), 1.03 (s, 3H), 1.2 (t, 3H), 2.14-2.42 (m, 4H), 4.08 (q, 2H), 5.17 (s, 1H), 6.69 (s, 1H), 7.39 (t, 1H), 7.74 (d, 1H), 8 (d, 1H), 8.14 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 14.0, 18.0, 26.1, 29.0, 32.0, 34.3, 50.1, 104.2, 110.4, 114.2, 128.1, 138.2, 144.1, 144.6, 149.2, 155.5, 167.3, 194.1; MS: m/e: 384.43; Anal. Calcd for: C₂₁H₂₄N₂O₅: C: 65.61; H: 6.29; N: 7.29; Found: C: 65.55; H: 6.24; N:7.2.

Figure 1: ¹H NMR Spectrum of 2-methoxy-4-(2, 6-diphenyl pyridin-4-yl) phenol 1.

Figure 2: ¹³C NMR Spectrum of 2-methoxy-4-(2, 6-diphenyl pyridin-4-yl) phenol 1.

Figure 3: Mass Spectrum of 2-methoxy-4-(2, 6-diphenyl pyridin-4-yl) phenol 1.

Figure 4: ¹H NMR Spectrum of 2-methoxy-4-(2, 6-diphenyl-I-methyl benzyl pyridiniumbromide-4-yl) phenol 2a.

Figure 5: ¹³C NMR Spectrum of 2-methoxy-4-(2, 6-diphenylbenzyl pyridiniumbromide-4-yl) phenol 2a.

Figure 6: ¹³C NMR Spectrum of 2-methoxy-4-(2, 6-diphenyl-I-methyl-4-nitrobenzylpyridiniumbromide-4-yl) phenol 3a.

Figure 7: ¹³C NMR Spectrum of 2-methoxy-4-(2, 6-diphenyl-I-methyl-4-nitrobenzylpyridiniumbromide-4-yl) phenol 3a.

Figure 8: Absorption and emission spectrum of triaryl pyridine 3a with different medium.