Important Clinical Applications of 188Rhenium for Radionuclide Therapy

Ajit Shinto1,* and F.F. (Russ) Knapp2

1Comprehensive Cancer Centre, Kovai Medical Centre and Hospital, Coimbatore, TN-14, India
2Emeritus, Medical Radioisotopes Program, Oak Ridge National Laboratory (ORNL), P.O. Box, 2008, Oak Ridge, Tennessee, USA 37831-6229

Abstract: Although established clinical utility is of key importance in choosing agents for radionuclide therapy, other key factors include costs and GMP availability of sterile, pyrogen-free, regulatory approved radiopharmaceuticals. No-carrier-added (NCA) 188Rhenium(188Re, 16.8 hour half-life; 155 keV gamma emission) is available on demand as 188Re-perrhenate from saline elution of a 188Tungsten/188Rhenium(188W/188Re) generator. The availability and superb radionuclidic and chemical properties make 188Re an excellent candidate for radionuclide therapy. This radioisotope is readily attached to a variety of targeting agents and also emits high energy beta particles (E_{max} 2.12 MeV) for therapy. Over the last 30 years the effectiveness of 188Re for a variety of therapeutic applications has been established in multiple clinical studies. This overview provides a brief summary of clinical applications with 188Re-labeled agents as an introduction to the detailed clinical discussions in the following papers. Although 188Re radiopharmaceuticals for routine clinical use and accompanying reimbursement are not yet commercially available, several agents have been evaluated in clinical studies. In addition, a large number of 188Re radiopharmaceutical agents which have entered late stage clinical use and have demonstrated good efficacy. These key applications include palliative treatment of skeletal metastases, intra-arterial therapy of liver cancer and post PTCA intravascular inhibition of arterial restenosis. Also, 188Re radiopharmaceuticals had been developed and initially assessed for synovectomy and for marrow suppression. More recently, a unique device-based technology has entered clinical use for therapy of non-melanoma skin cancer using a 188Re topical cream. Finally, 188Re-antibodies are being developed for the potential therapy of infectious disease and this unique new therapeutic strategy is expected to enter clinical trials in the near future.

Keywords: Bone pain palliation, Cancer therapy, Liver cancer, Skin cancer, 188Rhenium, 188Tungsten/188Rhenium Generator.

INTRODUCTION

An earlier paper in this issue summarizes the development and use of the 188W/188Re radionuclide generator to provide no-carrier-added (NCA) 188Re for attachment to various radiopharmaceuticals for targeted therapy. This contribution provides a brief overview of several key 188Re radiopharmaceuticals currently in clinical use as well as agents for developing new 188Re therapeutic applications. Although various therapeutic radioisotopes have been evaluated in the clinical arena, many others represent promising candidates for evaluation (Table 1). 188Re represents a key therapeutic radioisotope which is readily available NCA from the 188W/188Re generator for which continued research interest spanning more than thirty years has been expressed by the research and clinical communities. In the last several years interest by the radiopharmaceutical community has evolved and the GMP manufactured generators are now available which provide NCA 188Re as an active pharmaceutical ingredient (API, Table 1). The first reported patient studies with 188Re were limited to very specialized applications involving evaluation of 188Re distribution in the nervous system [1] and for irradiation of the choroid plexus and central nervous system [2]. Although 188Re is of interest for therapeutic applications because of the benefit of high energy beta emission (2.12 MeV), some early studies had actually focused on evaluation of this radioisotope for possible diagnostic applications [3-4].

Despite extensive research and the development of new technology and targeting strategies, the literature has really only reflected the regulatory approval and introduction of a limited number of therapeutic radioisotopes/radiopharmaceuticals for routine clinical use (Table 1). As described in an earlier paper in this issue of IJNMR, in addition to the goal of decreasing 188Re unit dose costs by optimization of generator use, the assured routine availability of reactor-produced 188W and 188W/188Re generators are two key issues which must be further addressed as well. Use of the 188W/188Re generator system is particularly well suited for use in more remote areas and in developing regions where the logistics and high costs of regular radioisotope importation are important issues.
Realization of the benefits for clinical use of ^{188}Re in developing regions was promoted by Dr. A. J. Padhy in the Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA), which had teamed with ORNL in the early 1990’s and various research centers to explore this possibility. Multi-institutional clinical projects were established for support of two key clinical programs focused on the use of various ^{188}Re agents for the transarterial therapy of non-resectable liver cancer [5-7] and for post angioplasty treatment for inhibition of coronary restenosis using ^{188}Re-liquid-filled balloons [8]. The very successful Thematic Program on Health Care project (Asia and Pacific Region, RAS/6/028) entitled “Management of Liver Cancer Using Radionuclide Methods With Special Emphasis on Trans-Arterial Radio-Conjugate Therapy and Internal Dosimetry” [6], was initiated in 2000, and represented the first IAEA-sponsored doctoral program. At the same time, these IAEA efforts were effectively coordinated through various Coordinated Research Project (CRP) programs organized by the IAEA Industrial Applications Section, which supported basic science studies for evaluation of ^{188}W production, development of new $^{188}\text{W}/^{188}\text{Re}$ generator prototypes, and for the development and pre-clinical evaluation of a variety of ^{188}Re-labeled radiopharmaceutical agents. The two ^{188}Re applications which have moved further forward into the clinical arena include the use of ^{188}Re-labeled agents for treatment of inoperable hepatocellular carcinoma (HCC) and for palliation of metastatic bone pain with ^{188}Re-HEDP. The goal of this paper is to provide an overview of the use of ^{188}Re-labeled therapeutic agents for the treatment of several clinically relevant conditions for targeted therapy with beta irradiation. In addition to the therapeutic benefits of the ^{188}Re high energy 2.12 β^+ emission, the accompanying 155 keV gamma photon emission allows important theranostic benefits, for determination of biodistribution and biokinetics to evaluate dosimetry and to potentially correlate biodistribution with therapeutic response. Since the published literature describing the development and use ^{188}Re-labeled agents is becoming quite extensive, only snapshots of these technologies are described in this paper. As described in more detail in the accompanying paper, ^{188}Re is generated by beta-decay of ^{188}W, and conveniently obtained by saline elution of the $^{188}\text{W}/^{188}\text{Re}$ generator system, prepared using reactor-produced ^{188}W obtained by the $^{188}\text{W}(2n,y)^{188}\text{W}$ route. The generator system is usually installed in-house and represents a very convenient, cost effective and on demand source of ^{188}Re. The eluted sodium ^{188}Re-perrhenate is then available for radiopharmacy preparation of various ^{188}Re-labeled therapeutic agents using chemistry similar for the introduction of ^{99m}Tc into diagnostic agents. Generally, generator activity levels of $0.5-1$ Ci are commercially available, and in some cases, as GMP manufactured sterile systems. Currently, GMP-manufactured non-sterile generators are available from Isotope Technologies, in Munich, Germany, and from the JSCSSC RF-IPPE Institute in Obninsk, the Russian Federation. A GMP-produced sterile generator system equipped with a disposable ^{188}Re post elution concentration module is available from IRE-Elit, in Fleurus, Belgium (Knapp, Table 1).

1. KEY CURRENT CLINICAL APPLICATIONS WITH ^{188}Re-LABELLED RADIOPHARMACEUTICALS

1.1. ^{188}Re-Rhenium-Hydroxyethylidene Disphosphonate (HEDP)

^{188}Re-Rhenium-HEDP is the key agent which has evolved into further clinical studies from an impressive series of agents and strategies which have been developed and evaluated for the use of ^{188}Re-labeled agents for the treatment of metastatic bone pain. The first clinical studies with ^{188}Re-HEDP were reported in 1998 by Maxon [9-10], where the biodistribution and radiation dosimetry characteristics determined in preliminary studies in patients with skeletal metastases following intravenous administration of a 30 mCi dose (1110 MBq) provided benefits and toxicity similar to data reported previously for ^{188}Re-HEDP. These investigators noted the expected benefits of on-demand availability of ^{188}Re from the $^{188}\text{W}/^{188}\text{Re}$ generator and in-house preparation (Figure 1) of ^{188}Re-HEDP for treatment on an outpatient basis which has now evolved to a “kit”-based preparation. The ready availability of NCA ^{188}Re on demand from the $^{188}\text{W}/^{188}\text{Re}$ generator is an important technical and operational convenience which catalyzed the evaluation of several other agents for bone pain palliation based on ^{188}Re. Although ^{188}Re-labeled hydroxyethylidene diphosphonate (^{188}Re-HEDP) is the only ^{188}Re-labeled agent for bone pain palliation which has evolved for broader clinical use, other examples of ^{188}Re-labeled bisphosphonate ligands have been prepared and evaluated in pre-clinical studies. Examples of these ^{188}Re-phosphonate analogues which have been reported for potential metastatic bone palliation include dipicolylmine alendronate [11], ethylenediamine-\text{N,N,N',N''}-tetraakis (methylene phosphonic acid) [12] and 2-sulfonato-1,1-ethylidine bisphosphonic acid (SEDP) [13]. Evidently these ^{188}Re-
phosphonate-based agents have not progressed to clinical studies. Although other 188Re phosphonate analogues have been evaluated but have evidently not yet progressed.
to evaluation in the clinical arena, the 188Re-dimercaptomethylsuccinic acid (188Re-DMSA) non-phosphonate-based 188Re-labeled agent (Figure 2) [14-20] had also been developed and evaluated for treatment of metastatic bone pain. This agent was developed for potential therapy of various tumors as a “matched pair” to 99mTcDMSA, which had demonstrated uptake in medullary carcinomas of head and neck, and medullary tumors [16]. This 188Re-DMSA agent is unique since different stereoisomers are formed during radiolabeling with 188Re. A very nice subsequent study isolated the multiple/three 188Re-DMSA isomers prepared by stannous ion reduction by high performance liquid chromatography [19]. Evaluation of each of the isomers in animals studies, showed no differences in localization. This was a potential important benefit which meant that isomer separation would not have been required to optimize dosing and for potential further clinical evaluation of this agent for bone pain palliation. Systematic evaluation of the isomeric mixture of 188Re components was followed by early phase safety and therapeutic studies in patients [14, 18]. In addition to the several papers which had described the synthesis, evaluation of the isomers, and pre-clinical evaluation of the, 188Re-DMSA agent showed excellent localization in skeletal metastases, as may have been suspected from the localization of metastasis from breast carcinoma using 99mTc-DMSA. Subsequent clinical studies demonstrated high specific uptake 188Re-DMSA in skeletal metastases, indicating possible use for therapy of skeletal metastases from prostatic carcinoma [18] and possibly from other primary carcinomas. However, because of high renal uptake the 188Re(V)-DMSA agent has not been further evaluated for therapeutic efficacy in clinical studies.

\[
[\text{^{188}ReO}_4^-] + \text{SnCl}_2 + \text{C}_2\text{O}_4^{2-} + \text{H}_2\text{N-N(CH}_3_3\) \text{-C(=S)SCH}_3 \rightarrow
\]

\[
[\text{^{188}Re\equivN}] + \text{NaL}
\]

\[\text{L = dithiocarbamato ligand, } [\text{R}_2\text{N-C(=S)S}]\]

\[\text{R} = (-\text{CH}_3_3\) \text{-CH}_2\text{-CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_3)\]

Figure 2: Structure of 188Re-dimercaptomethylsuccinic acid (DMSA).

Subsequent studies focused on an evaluation if pH levels affected renal uptake. With the “matched pair” 99mTc(V)-DMSA analogue, for instance, increased pH values reduce renal uptake [20]. In order to assess the importance of the reducing agent for the Re(V)→Re(VII) reduction step, other investigators showed that 188Re(V)-DMSA prepared by reduction with sodium meta-bisulfite demonstrated less renal uptake in animal studies [21-22] and that such complexes mixtures consisted of different isomer ratios. Interestingly, the complex prepared by the usual stannous reduction exhibited more prolonged skeletal retention. Although vascular clearance was the same for both preparations, kidney retention was greater for 188Re(V)-DMSA prepared using stannous anion reduction. This may explain the differences observed in the relative biodistribution results between the 188Re(V)-DMSA products prepared by the two different reducing agents. So in spite of some very careful and promising developmental studies, apparently despite the promising results of Blower and others, the clinical use of 188Re-DMSA has not progressed further.

The 188Re-HEDP agent moved forward in several clinical studies for bone pain palliation because of its efficacy, ease of preparation and low toxicity. Data from several very promising studies have been reported using 188Re-HEDP [23-28] This agent shows good clinical efficacy and demonstrates pain palliation results similar to data described for phosphonate analogues radiolabeled with other beta-emitting radionuclides (153Sm and 186Re) and 89Sr chloride [28] in patients presenting with metastatic bone disease form metastases from prostate, breast and lung cancer. As an example, 61 patients presenting with skeletal pain from bone metastases from cancer of the bladder, breast, kidney, lung, and prostate, were treated with doses of 31-188 mCi [23]. Good efficacy and overall pain relief of 80% with no evidence of hematopoietic or severe side effects were observed after one year. A response rate of 76% was reported from another study in which 27 patients with hormone refractory prostate cancer were treated with 188Re-HEDP [24]. Similar efficacy has also been observed treating patients with metastatic bone from lung cancer [25] and several other clinical studies with 188Re-HEDP. A larger controlled study conducted in Bonn, Germany, focused on repetitive treatment, where a single dose or repeated doses of 188Re-HEDP were administered to 64 patients. In addition, to slightly better pain relief, more importantly, repeated dosing with 188Re-HEDP resulted and in an apparent therapeutic effect [24].

More recently, these authors in Bonn had retrospectively evaluated and compared the data from this study using single and multiple administrations of (188Re-HEDP) on palliation and survival of prostate
cancer patients presenting with more than 5 skeletal metastases [29]. The 188Re-HEDP was prepared using NCA 188Re obtained from an in-house generator following dilution with carrier perrhenate. Although the use of high specific activity radiopharmaceuticals is a usual goal, it is important to note that the use of 188Re-HEDP is a unique example where the Re specific activity must be decreased in order to provide sufficient mass for targeted uptake by an unknown mechanism. The data available for the 60 patients included PSA levels and Gleason scores, which were similar for the 3 groups, which consisted of Group A ($n = 19$) in which patients had received a single injection, Group B ($n = 19$) patients who had 2 injections and Group C ($n = 22$) in which patients had received 3 or more successive injections. When significant pain palliation was observed, it was independent of administration frequency. The mean 95% confidence interval survival data calculated from initiation of treatment were 4.50 ± 0.81 months for Group A (2.92-6.08), 9.98 ± 2.21 months (5.65-14.31) for group B, and 15.66 ± 3.23 (9.33-22.0) for group C. Values for pain palliation were 89.5% (Group A), 94.7% (Group B) and 90.9% (Group C). The number of lost life-years was significantly lower in Group C than the other two groups, although the 3 groups did not differ in Gleason score. An important observation was the 4.50 to 15.66 month improvement in post-treatment overall survival for multiple-injections in comparison with a single injection of 188Re-HEDP. These studies in Bonn and similar studies by Liepe et al. with 188Re-HEDP in Kassel, Germany, and also elsewhere, had clearly demonstrated that in house use of the 188W/188Re generator is feasible and allows on demand and cost-effective access to the excellent 188Re-HEDP agent for bone pain palliation.

These combined clinical data have thus clearly demonstrated that efficacy using 188Re-HEDP [28] is similar to other bone pain palliation agents radiolabeled with 186Re and 153Sm. There is also great interest in the possibility of enhanced synergistic effects by administration of chemotherapeutic agents and targeted radiopharmaceuticals radiolabeled with beta-emitting radiopharmaceuticals. Some studies have suggested synergy by evaluation of the combined efficacy of chemotherapy and radiation damage from 188Re-HEDP. In a Phase I study, 188Re-HEDP (1 mCi/kg) was intravenously administered after a 14 day increasing (<2,500 mg/m2 total) oral dosage of capitabine (Xeloda$^\text{TM}$) to prostate cancer patients (3 patients/in two cohort) with bone metastasis refractory to hormone therapy [30]. The results demonstrated that capacitabine has no apparent effect on 188Re-HEDP biodistribution and excretion. Although unacceptable toxicity was observed in this initial MTD study, evidently, a Phase II study has been proposed to continue evaluation of the efficacy and potential synergistic effects of these two therapeutic strategies. More recently, similar combined effects of 188Re-HEDP and taxanes have been reported in human prostate carcinoma cells in vitro [31].

Although the earlier routine effective clinical use of 188Re-HEDP spanned over several years in Germany (Bonn and Kassel) and elsewhere, use of this agent at these centers is evidently not currently in progress. However, recent renewed interest in the benefits of using 188Re-HEDP for treatment of intractable skeletal pain form metastases are reflected in the efficacious reports of studies in progress at the Meander Medical Center in The Netherlands [32-36] and in Coimbatore, India [37]. At the Meander Center, in house routine GMP production of 188Re-HEDP had been instituted [32-36] and over 200 patients have been treated with 188Re HEDP at this institution (R. Lange, personal communication). In studies conducted at the Comprehensive Cancer Centre at the Kovai Medical Centre in Coimbatore, the clinical efficacy of 188Re-HEDP is also being evaluated [37]. Of particular importance for radiopharmacy preparation, several “kit” preparations have also been described for the preparation of 188Re-HEDP for patient administration [39-43].

1.2. 188Rhenium Labeled Particles for Transarterial Therapy of Hepatocellular Carcinoma (HCC)

Because of the widespread occurrence of inoperable hepatocellular carcinoma (HCC), especially in developing countries, the availability of cost effective radioactive therapeutic agents often offers the only option for these patients. For this reason, many approaches and technologies are being evaluated and the trans-arterial administration of therapeutic radioisotopes for trapping in the micro vascular of the tumor feeding arteries is an important accessible option for patient treatment and management. Interest in this therapy area has seen the evolution of several 188Re-labeled agents, because of attractive radionuclidic properties and on demand availability. Several 188Re-labeled Lipiodol-based agents have thus been developed and evaluated for this important application (i.e. IAEA trial) [44-49]. The development of radiolabeling “kits” [50-53] and impressive clinical experiences with this agent [54-85] have been
described. Also, various 188Re-labeled microsphere preparations have been described as administration vehicles [86-91], “kits” have been developed [90] and patient studies reported [92-95]. Lipiodol is an ethiodized plant oil containing iodine and combined with very lipophilic fatty acid ethyl esters has been traditionally used for many years as a myelographic contrast agent. For therapy, 131I-Lipiodol was developed for hepatic arterial administration, shows prolonged hepatic retention, and is widely used for HCC therapy [96-97]. Incorporation of the therapeutic 131I radioisotope by exchange of the nonradioactive iodine had offered an opportunity to irradiate the tumor in addition to interfering with blood flow. However, this agent is difficult to prepare, can be unstable and 131I emits high energy photons so significant radiation dose may not localized just to the desired treatment site.

188Rhenium was recognized several years ago as an attractive alternative candidate to the use of 131I for HCC targeting therapy because of its inexpensive availability on-demand from the 186W/188Re generator and a variety of 188Re-labeled Lipiodol analogues have been prepared and evaluated. Although the use of 188Re-labeled microspheres had appeared to be an attractive strategy because of the ease of preparation and particle stability [86-90], most approaches have focused on the combination/suspension of a very lipophilic 188Re-labeled complexes with Lipiodol. One early approach involved suspending the readily prepared 188Re-sulphur colloid in Lipiodol [98], while other approaches used the 188Re-ECD agent for Lipiodol suspension. However, none of these agents have progressed to more expanded clinical studies, and a more focused approach [99] involved the very lipophilic 188Re-TDD agent (2,2,9,9-tetramethyl-4,7-diaza-1,10-decanedithiol) agent initially developed and used in the IAEA-supported trials and had been used in several clinical trials (Figure 3). Afterwards, the more lipophilic 188Re-4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol (188Re-HDD) agent had evolved from these investigators and was introduced for clinical use at several institutions [100-105]. To assess efficacy, 188Re-HDD has been compared to 131I-lipiodol in a comparative evaluation in patients suffering from inoperable HCC [100]. The importance of this study demonstrated that 188Re-HDD/lipiodol resulted in a cytotoxic effect and a lower radiation exposure for an expected higher tumor-killing effect than 131I-Lipiodol.

Under the leadership of Dr. A. J. Padhy, the International Atomic Energy Agency (IAEA) then prepared a protocol and conducted a multi-country Phase I/II clinical trial with 188Re-HDD-Lipiodol demonstrating three complete responses and 19 partial responses in 185 patients in eight countries [5-7].

Further studies in a Coordinated Research Project (CRP) organized and funded by the International Atomic Energy Agency (IAEA) included a single HCC patient evaluation using 188Re-HDD-lipiodol to evaluate dosimetry [101-102] where the maximum safely tolerated patient activity was estimated to be approximately 225 mCi (8511 MBq). The lungs were the dose limiting organ and most importantly, two doses of 188Re-HDD-lipiodol resulted in complete disappearance of a large volume tumor and the patient

![Figure 3: Chemical structures of 188Re-labeled lipophilic agents for admixture with Lipiodol for transarterial administration for HCC therapy. 188Re-(V)-HDD 188Re-(V)-DECDC 188Re-(III)-SSS-lipiodol [SSS = (S$_2$CPh)$_2$] (S$_2$CPh)$_2$.](image-url)
was disease free for 18 months. Subsequently, this group reported a large scale clinical trial involving 93 patients in India and Vietnam using ^{188}Re-HDD-lipiodol [103]. In Ghent, Belgium, studies confirmed that 28 patients receiving 35 treatments of ^{188}Re-HDD-lipiodol with activities ranging from 130-190 mCi tolerated the dose with no severe complications [104-105]. A significant reduction in AFP levels was measured in patients six weeks after treatment, and a response assessment showed partial response in 1, stable disease in 28, and disease progression in 2 treatments.

The use of ^{188}Re for the treatment of HCC is also in progress in Rennes, France, where preparation of a third agent - ^{188}Re-(III)-SSS-lipiodol [SSS = (S$_2$CPh)(S$_2$CPh)$_2$] (Figure 3) has been developed [47-49]. Initial studies described the synthesis of this highly lipophilic agent and formation of the ^{188}Re-(III)-SSS-lipiodol complex [59]. Studies in a porcine model [58] and a comparative evaluation of ^{188}Re-SSS-lipiodol with ^{131}I-lipiodol in rats bearing experimental hepatocellular carcinoma tumors demonstrated the expected more positive results from irradiation of the small rat tumors [59]. A summary of the Phase I open-label clinical trial at Rennes with ^{188}Re-SSS/Lipiodol is described in the US NIH directory (https://clinicaltrials.gov/ct2/show/NCT01126463). The combined evaluation of clinical studies with ^{188}Re-lipiodol agents have shown that this strategy is efficacious, although two issues which must be further improved, include increasing the ^{188}Re radiolabeling efficiency and in vivo stability of these agents to minimize liver leakage of activity and potential radiation exposure of non-target tissues.

Another approach for HCC therapy with ^{188}Re has described the preparation of the ^{188}Re-nitrido bis (diethylthiocarbamate) (“DEDC”) agent as an alternative agent with increased radiolabeling yields [45]. The “kit” preparation of (DEDC) complex involves ^{188}Re(V) which is attached to nitrogen as a nitrile linkage (Figure 3) [51-53]. Use of an automated synthesis module insures reproducible preparation of ^{188}Re-DEDC-lipiodol and preparation of the Lipiodol mixture and reduces user radiation dose [106]. The ^{188}Re-DEDC complex is highly lipophilic and is quantitatively extracted into lipiodol forming the administration mixture. With appropriate administration the ^{188}Re-DEDC-lipiodol complex demonstrates good in vivo stability, shows selective tumor localization and results in impressive target/non-target tissue ratios [106, 107]. Initial clinical trials showed that ^{188}Re-DEDC could be a useful radiopharmaceutical for unresectable HCC therapy. As another example, preparation and pre-clinical evaluation have also been reported for ^{188}Re(N)(cys) (PNP), which is another example of a Re(V) nitrido complex, but clinical studies with this congener have evidently not yet been pursued [108].

Finally, the combined synergistic application of ^{188}Re-HEDP and other agents with chemotherapeutic agents may develop further. As an example, a recent Phase I safety study evaluated the combination of ^{188}Re-HEDP with capecitabine in patients with hormone refractory prostate cancer where 17 patients were treated with ^{188}Re-HEDP and different doses of capecitabine [30]. Preclinical studies have also evaluated the in vitro effects of both gemcitabine and 5-fluorouracil and ^{188}Re in an in vitro model of HCC, demonstrating that the potential importance for further exploration of combined therapeutic approaches using ^{188}Re agents and targeted toxic agents may offer increased therapeutic effectiveness. More recently, combinational studies using sorafenib in a hepatoma cell line have shown positive results, [109, 110].

Continuation and expansion of the clinical use of such Lipiodol mixtures of these radiopharmaceuticals and potentially other ^{188}Re-labeled agents for the therapy of inoperable HCC is expected to continue, however, GMP commercial availability of such agents would be expected for wider use. The extensive earlier international clinical experience during the IAEA-supported international trial has recently served as the foundation for use of ^{188}Re-agents for current treatment of HCC in Coimbatore, India, and at several other centers.

2. EXAMPLES OF PIONEERING CLINICAL STUDIES WHERE ^{188}ReHENIUM LABELED AGENTS PLAYED KEY ROLE FOR TECHNOLOGY DEVELOPMENT

2.1. Inhibition of Arterial Re-Stenosis Following PCTA

Percutaneous transluminal coronary angioplasty (PTCA) is a common treatment mode for patients suffering from atherosclerotic coronary artery disease where balloon inflation at the stenotic site restores flow (Figure 4). However, because of the wound healing biological response to vessel damage, the resulting smooth muscle cell proliferation often results in the occurrence of restenosis in as high as 30–50% of the patients post angioplasty. For this reason there has been extensive, aggressive research to develop technologies which would effectively reverse the
incidence of coronary restenosis after PTCA. One important and successful strategy had been the use of radioisotopes emitting ionizing radiation to inhibit smooth muscle proliferation for this new “intravascular radionuclide therapy (IVRT)” method. A key example has been the use of \(^{188}\text{Re}\)-liquid filled balloons for restenosis therapy which had been rapidly embraced in the 1990’s by the interventional community. Single site clinical trials were initially conducted at the Cedars Sinai Medical Center in Los Angeles (Dr. Neil Eigler, et al.) [110-112] and at the Columbia University/Presbyterian Hospital in New York City (Dr. Judah Weinberger, et al.) [113-121]. Subsequent initiation of clinical trials with this approach quickly followed in several countries (including Australia, Germany, Korea, Taiwan, etc.). A dedicated journal (Cardiovascular Radiation Medicine) was also introduced by Elsevier, which was published during the 1999-2004 period, but which had ceased publication when this technology was subsequently usurped by the use of drug eluting stents. The IAEA-supported trial also had high hopes, but because of the limited infrastructure available at many sites, introduction of this technology for the use of \(^{188}\text{Re}\)-liquid filled balloons did not flourish and move forward as expected.

During this intense period of developed and evaluation, several companies were also established which were dedicated to the use of beta emitting radioisotopes for this unique application and launched effective technologies (\(^{192}\text{Ir}\), Novoste; \(^{188}\text{Re}\), Vascular Therapies, etc.). It is impressive that such a large number of peer-reviewed papers had been published during this short time period in high level journals on this unique application use of \(^{188}\text{Re}\)-intravascular therapy techniques.

The common occurrence of smooth muscle hyperplasia leading to arterial restenosis following balloon angioplasty is an unavoidable and well established complication associated with interventional procedures resulting from vascular hyperplasia in response to vessel wall damage (Figure 5). Until relatively recently, the use of intravascularly placed beta-emitting radioisotope sources was in fact the only successful therapeutic approach to overcome this issue until the introduction of drug-eluting stents [122-123]. Evaluation of various radioisotopes and delivery approaches had rapidly progressed to clinical trials and included the use after-loader placed \(^{192}\text{Ir}\) wires and ribbons advanced through in-dwelling catheters, \(^{32}\text{P}\)-coated balloons and the use of \(^{188}\text{Re}\) \(^{188}\text{Re}\) liquid-filled balloons, involving manual filling of a balloon with subsequent filling with \(^{188}\text{Re}\) solution placed following angioplasty [110-121]. Use of the liquid-filled balloon offered a special bonus for the most effective approach for uniform vessel wall irradiation. Because of the rapid fall off of beta particle energy with radial distance, the use of solid sources was challenged by the difficulty of luminal centering. The difficulty in accurate luminal centering of the radioactive source would result in unavoidable consequence of non-uniform vessel wall irradiation, since reduced irradiation dose delivery (i.e. solid

![Figure 4: Left. Cartoon illustrating of the smooth muscle cell hyperplastic wound healing response to vessel damage from coronary balloon angioplasty and the use of post PTC irradiation for inhibition of restenosis. Right. Illustration of damage to intima from high pressure balloon inflation (With permission of the Editor, Science and Medicine, Vol. 3(3), 1996).](image-url)
source more distant than from contralateral wall) would stimulate smooth muscle cell hyperplasia. The advantages and eloquence for using the ^{188}Re liquid filled balloon thus included a de facto uniform contact with and thus uniform irradiation of the target wall region. Figure 5 illustrates the effectiveness of this strategy for inhibition of smooth muscle hyperplasia after balloon inflation in a porcine model. The obvious benefits of using the ^{188}Re-liquid filled balloon strategy thus generated widespread interest, and a large number of patients were subsequently treated with this therapy at centers in the Australia, Germany, Korea, Taiwan, and other countries, at self-funded single centers and in conjunction with the International Atomic Energy Agency (IAEA) established a Coordinated Research Project (CRP) in countries promoted and funded by Dr. A. Padhy, using generators available from ORNL.

The use of ^{188}Re-perrhenate for balloon inflation was first proposed for liquid balloon-filled inflation [124-135] and was then successfully introduced for clinical use [110-121]. Since possible unexpected balloon rupture would result in vascular release of ^{188}Re-perrhenate and potential high thyroid and radiation exposure, animal studies evaluated thyroid pre-blocking and also post rupture displacement of perrhenate. These studies demonstrated that prophylactic pre-blocking with iodide (Lugol's) [136] and post thyroid displacement of ^{188}Re-perrhenate with perchlorate [137] effectively protected the thyroid from radiation exposure and one clinical case did report balloon leakage of ^{188}Re [138]. Preparation and initial clinical evaluation ^{188}Re-complexes that demonstrate high renal clearance as well as several hydrophilic complexes is another reported approach [139-147]. For the use of radioactive liquid filled balloons such as ^{188}Re, a close association was required between the interventionalist and nuclear medicine or radiation oncology physician administering the radioactive source for the successful use of this technology. Of particular importance is an accurate estimate of the dose prescription, which is accomplished with real time use in the catheterization suite of specially developed software using the balloon dimensions and lesion characteristics [148].

Several clinical studies had used various ^{188}Re-labeled species for post angiographic treatment of arterial segments which initially, which included ^{188}Re sodium perrhenate ($^{188}\text{ReO}_4^{2-}$) obtained by direct physiological saline elution of the ^{188}W/^{188}Re generator [111-121]. Use of ^{188}Re-perrhenate represented the most direct and simple route to obtain ^{188}Re, since perrhenate is exclusively and rapidly excreted via the urinary bladder in the very unlikely possibility of balloon rupture/leakage. Leakage of ^{188}Re from a perrhenate-filled balloon study was reported in one clinical case [138] but dosimetric analysis indicated no unacceptable radiation dose had been received. Several studies substantiated that thyroid localization of perrhenate could be blocked and displaced by treatment with Lugol's (NaI, sodium iodide) solution or with perchlorate [136-137]. Investigators also evaluated the preparation and clinical use of the ^{188}Re-MAG3 complex [140-146] and ^{188}Re-labeled DTPA (diethylene triminepentaacetic acid) agents [147, 149-150], and preparation of the ethylene dicysteine complex (EC) [150], as an added precaution, since the rapid urinary bladder excretion of both of these agents is well established in the unlikely event of balloon rupture (< 1 in 10,000)).
Several studies had shown the positive results from using this technology. As one example, post angiographic analyses of 113 patients who had received 22.5 Gy [151-152] in a group of 225 patients using 188Re liquid-filled balloons demonstrated that the target vessel revascularization rate was significantly lower in patients who had received radiation in comparison with data from 112 patients in the control group [154]. Although the data from such a small number of patients did not permit an accurate analysis, in another study a six-year clinical follow-up study after treatment with 188Re filled balloon showed that the restenosis was lower in the case of 188Re patients as compared to the controls [153, 155]. Unfortunately, IVRT with 188Re-liquid filled balloons or use of other radioisotopes never developed to the promise that it offered due to the introduction and preferred use of drug coated stents. The results of typical trials resulted in significantly reduced incidence of restenotic segments compared to controls. Also, impressive angiographic data were still maintained in studies evaluated 2–6 years post treatment [149, 153-158]. In spite of the impressive results from this multiple studies, use of this technology for coronary vessels was rapidly abandoned with the introduction of drug-eluting stents.

More recently, however, this technology had been further developed and successfully extended for the treatment of restenosis of the peripheral arteries [159-161], using a device and technology developed by FlowMedical, in Garching, Germany. ITM Munich had received full CE-certification and approvals for the rhenium-PTA and PTCA in September 2008 (http://www.itm.ag/content/view/49/92/). Despite several published studies with promising results, it is unclear if clinical use of this technology for the peripheral arteries is continuing. In addition, preliminary studies have also reported the use of 188Re-liquid filled balloons for the successful treatment of refractory benign airway strictures [162] and keloids [163]. Apparently these studies have not further proceeded, but the positive results further illustrate the usefulness for inhibition of re-closure from smooth muscle hyperplasia can be avoided by radiation therapy in areas accessible by catheters for balloon inflation. Impressive results from several other IVRT studies have also been reported [163-184], before use of this technology using the 188Re liquid-filled balloons was transcended by use of drug-eluting stents for restenosis therapy of both the coronary and peripheral arteries.

In fact, the effectiveness of the drug eluting stent and 188Re-IVRT technologies are evidently very similar for the inhibition of arterial restenosis after PTCA. However, use of non-radioactive technologies which can be conducted in routinely available facilities of course has many practical advantages over techniques which require the availability, use and disposal of radioactive materials. The use of radioactive sources also requires special precautions, training and often the complementary involvement of staff with board certification in nuclear medicine or radiation oncology. Although an effective and productive symbiotic relationship between interventional and nuclear medicine/radiation oncology physicians at a number of institutions, this technology had unfortunately never really been embraced by the nuclear medicine community, and been essentially abandoned with the introduction of drug-eluting stents. However, use of these radioisotopic strategies for restenosis therapy represents an important chapter in understanding the effects of post PTCA occlusion and paved the way for the introduction of more recent technologies.

2.2. Radionuclide-Based Synovectomy with 188Rhenium Labeled Agents

The use of radiopharmaceuticals containing beta-emitting radioisotopes for synovial irradiation via intra-articulation for treatment of rheumatoid arthritis is a well-established nuclear medicine procedure which is widely practiced worldwide. It is interesting, however, that the US FDA has always questioned the possibility of radionuclide leakage and irradiation of non-target tissues as the key factor why they would not be expected to approve such a technology for clinical use in the US, although the first studies had been described in the U.S. Many different radioisotopes have been evaluated in animal and clinical studies and commercially approved radioisotopes and preparations used for this therapy include 166erbium-(168Er) (Table 1, for small joints), 186Rhenium-(188Re, for medium size joints) and 90yttrium (90Y, for large joints). Because of attractive radioisotopic and chemical properties, and generator availability, several radiopharmaceutical preparations continuing 188Re have also been prepared, evaluated in animals and studied in humans [185-196]. The use 188Re has been very attractive and used in a variety of studies, since the high energy β^- particles are especially useful for treating larger joints such as the knee. Inert vehicles for intra-articulation which have suitable biological properties for application in radiosynovectomy as seen in animal experiments to which beta-emitting radioisotopes have been attached
hydroxyapatite particles [191-192], microspheres [193-194] and rhenium colloids [195]. The results of a number of clinical studies have been reported [186-190] using 188Re-labeled agents for this application but presumably because of the broad availability of approved agents for the same application, use of the 188Re agents had not progressed to routine use.

2.3. 188Rhenium Labeled Antibodies for Marrow Suppression

Rhenium-88-labeled antibodies have also been widely studied, although these agents have not entered routine clinical use [196]. One application using 188Re peptide/antibodies which that been explored on a clinical basis in some detail is the impressive results of bone marrow ablation with a 188Re “directly” labeled NCA 95 antibody anti-CD20 (anti NCA95) [197-203] which was evaluated as an adjuvant for conditioning of leukemia therapy. In spite of excellent myeloblastic results the further use of this agent, however, has evidently not continued because of the unfortunate persistently high renal radiation doses. Because of the cost-effective routine availability of the 188Re generator and facile preparation of directly 188Re-labeled anti CD20, this approach may still have promise if methods become available that could significantly increase renal clearance.

3. EXCITING NEW THERAPEUTIC STRATEGIES USING 188RHENIUM LABELED AGENTS

3.1. Rhenium-188 Treatment of Non-Melanoma Skin Cancer

A new device-based 188Re brachytherapy technology could provide enormous benefit to patients presenting with head and neck BCC or SCC and precludes the post treatment disfigurement often encountered from surgery or from use of other more options. Beta-emitting radioisotopes have also been evaluated for tropical treatment (brachytherapy) of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), the more common generally non-malignant non-melanoma forms of skin cancer. Such external applications of 188Re are conducted as a device rather than an administered radiopharmaceutical, representing regulatory approval along a different path. One important parameter is the soft tissue penetration of beta penetration, and these values for several beta-emitting radioisotopes of interest for this application are illustrated in Figure 6, in comparison to some other beta-, alpha- and Auger-emitting therapeutic radioisotopes of current interest.

188Rhenium is well suited for this application since radiation should reach an average tissue depth of about 3 mm. Application of beta-emitting radioisotope impregnated materials to basal cell and squamous cell carcinomas, particularly of the face and neck, has practical appeal and benefits, for instance, in comparison to the time consuming and invasive “Mohs” surgical technique.

![Figure 6: Comparison of estimated soft tissue penetration as a function of particle end-point energy of examples of beta-emitting radioisotopes.](Image)

The very common occurrence of BCC and SCC skin cancers has thus catalyzed the evaluation of a large variety of treatment approaches which would be effective but which would preclude disfigurement, especially for cancers of the head and neck. While the Mohs surgical excision technique has been practiced for some time, the simple use of brachytherapy or external beam therapy using gamma rays X-rays or electrons for treatment of basal cell and squamous cell carcinomas, are attractive radiation therapy techniques which offer simplicity, the general avoidance of disfigurement and other technical advantages. While exceptional precision is required for the excision of melanoma lesions, dangerous metastases are generally not an issue for treatment of basal cell and squamous cell carcinomas, and the use of ionizing radiation is very effective. One approach is the use of radioactive patches, which is a simpler and non-invasive treatment method for those patients where traditionally therapeutic modalities would lead potential to scarring and disfigurement. Several beta-emitting radioisotopes have been evaluated for therapy of non-melanoma skin cancer (Table 2), including 166holmium (166Ho), 32Phosphorus (32P), 188rhenium (188Re) and 90yttrium- (90Y), which are generally embedded in
Table 2: Representative Beta-emitting Radioisotopes Evaluated for Superficial Brachytherapy of BCC and SCC Skin Cancer

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Radioactive Emission E_{max}, MeV</th>
<th>Tissue Irradiation Parameters</th>
<th>Average mm Soft Tissue Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>188Gold</td>
<td>β_{max}, 0.96</td>
<td>2.7 days</td>
<td>≈ 4.2 mm</td>
</tr>
<tr>
<td>166Holmium</td>
<td>β_{max}, 1.85</td>
<td>26.8 hours</td>
<td>≈ 0.8 mm</td>
</tr>
<tr>
<td>31Iodine</td>
<td>β_{max}, 0.606</td>
<td>8.02 days</td>
<td>≈ 4.2 mm</td>
</tr>
<tr>
<td>192Iridium</td>
<td>γ_{max}, 0.672 (i.e. no β's)</td>
<td>73.8 days</td>
<td>≈ 4.1 mm</td>
</tr>
<tr>
<td>32Phosphorus</td>
<td>β_{max}, 1.71</td>
<td>14.29 days</td>
<td>≈ 8 mm</td>
</tr>
<tr>
<td>188Rhenium</td>
<td>β_{max}, 2.12</td>
<td>16.9 days</td>
<td>≈ 9 mm</td>
</tr>
<tr>
<td>90Yttrium</td>
<td>β_{max}, 2.3</td>
<td>64.1 hours</td>
<td>≈ 10 mm</td>
</tr>
</tbody>
</table>

patches which are directly applied to the cancerous area. Because of attractive radionuclidic properties and availability from an on demand generators system, a number of studies have evaluated use of 188Re patches in both preclinical, and more recently, clinical settings. In one study, treatment of superficial experimental melanoma tumors induced in a C57BL/6 mouse model with 188Re bandage [204] tumor regression and delay of tumor growth was observed in all treated animals as a function of radiation dose. In another animal study, 188Re-labeled paper was used and successful treatment of mouse skin cancer and mouse sarcoma was demonstrated [205].

Use of homogeneously 188Re imbedded nitrocellulose paper [204] was an early pre-clinical study which evaluated use of 188Re for topical treatment of superficial skin cancer, where 188Re-tin colloid was filtered through nitrocellulose filter paper following stannous chloride reduction of 188Re sodium perrhenate [204]. The nitrocellulose paper was then contacted to acetone-soaked gauze to dissolve the nitrocellulose and bind the 188Re-tin colloid to the gauze pad, and subsequent studies established the stability and tight binding of the 188Re-bound gauze preparation. Tumor growth in BALBc and ICR mice (5-7 mm diameter, 1-3 mm thick) formed after inoculation with RT101 mouse skin cancer and sarcoma 180 cell lines treated with 188Re-labeled paper preparation sections was evaluated after delivery of an estimated 50 and 100 Gy doses. While 60-75% remission was observed after four weeks in animals with sarcomas, complete tumor remission was seen in animals with RT101 tumors after this time period. These early data demonstrated that further topical brachytherapy studies with 188Re applicators may be a simple and effective technique for therapy of non-melanoma skin cancer.

Because of anatomical locations which may be difficult to adequately reconstruct following surgical removal of basal cell and squamous cell carcinomas of the face and neck, the clinical use of locally applied beta-emitting radioisotopes thus offered an innovative alternative simple and inexpensive strategy [205-210], and 188Re impregnated patches and creams have demonstrated dramatic removal of such lesions without accompanying disfigurement. Wider use of this promising technique is expanding and the required technology and applicators are available (OncoBeta® GmbH, Garching, Germany). Dose prescription is based on the beta penetration at the skin surface and the time of treatment. Figure 7 illustrates the dose penetration curves which have been developed for use of the 188Re cream [206]. The 188Re cream is applied over the tumor surface for a specified time determined by the dose prescription.

This approach is based on use of a 188Re-impregnated cream for topical application which had initially been commercially developed as the “ITM Rhenium-SCT™” (Skin Cancer Therapy) which was initially available from the ITG portfolio. Results of reported studies have demonstrated this to be an excellent approach for treatment of non-melanoma skin cancers and the results of several clinical studies have been published [206-209]. An important advantage of this strategy is that application of the cream automatically matches the skin conformity and does require pre-preparation of a radioactive applicator to match the anatomy of the therapy site. Instead, the
188Re is embedded in a cream which is then applied to the treatment site, previously covered with surgical tape, with a special applicator. The Rhenium-SCT™ is CE Labeled as a Medical Device and is now available from OncoBeta® GmbH who provide all the required hardware (treatment unit and applicator, Figures 8 and 9), as well as disposables and accessories needed for the treatment. Radiation doses to patient and staff are low (0.05 – 0.1 mSv for the patient and in average 0.7 µSv per treatment for the operators) using the OncoBeta® system.

The results of studies reportedly conducted in over 1,000 patients in Italy have provided excellent results [Data provided by OncoBeta®] and have demonstrated good therapeutic efficacy of 188Re for treatment of non-melanoma skin cancer. In addition to the on-demand availability of 188Re from the 188W/188Re generator, which has a useful shelf-life of several months, the short 16.9 hour half-life and high dose rate from the 2.12 MeV beta emission are important properties which allow outpatient treatment for use of the 188Re OncoBeta® technology. Before and after treatment example of the use of this technology for treatment of an ulcerated BCC of the scalp is illustrated in Figure 10.

For the OncoBeta® “cream” preparation, 188Re-sodium perrhenate is converted to a nano-colloid (200-800 microns) by use of a “kit” consisting of an HCl solution of thioacetamide and polyvinylpyrrolidone, which is then homogeneously combined with a synthetic acrylic resin material [206]. The treatment area is outlined visually and using dermoscopy epiluminescence to include a margin of typically 2-3 mm. Available literature from the OncoBeta company report that 188Re treatment of over 700 patients with BCC and SCC resulted in an overall 85% success rate. One recent published study enrolled 53 patients who presented with histologically confirmed basal cell (BCC) and squamous cell (SCC) carcinoma [205-208]. Almost all patients undergoing treatment have had
complete remission of the treated lesions. For the majority of the patients (89%) the treatment is conducted during a single-session. In some cases, depending on the depth of the lesion and the dose prescription, several cream applications may be required. The OncoBeta® system appears easy to use, provides impressive non disfiguring results, has now progressed to broader clinical application, and it is hopeful that this device technology will continue to be enthusiastically accepted and employed by the dermatology/oncology communities. Treatment is usually completed within one hour in a single session, is painless requiring no anesthetic and has exhibited high response and low recurrence in treated patients. OncoBeta® GmbH is currently further developing, certifying and commercializing this 188Re-based skin cancer treatment. The technology is evidently routinely used in Italy as a CE-certified medical device and hopefully evolving clinical studies with this technology in Europe will further evaluate its benefit in larger patient populations.

3.2. Application of 188Rhenium Labeled Agents for Therapy of Infectious Disease

Another unique application being pursued with 188Re involves in vivo targeting of infectious disease with radiolabeled peptides [210-225]. Radioimmuno-targeting of antibodies radiolabeled with beta (188Re) and alpha bismuth-213, 213Bi-emitting radioisotopes is a unique approach designed for the potential treatment of infectious disease. Target organisms include bacterial infections [217, 223], fungal infections (Cryptococcus neoformans, Histoplasma capsulatum) [210, 215-216], viral [211-215] and even HIV infections [217]. Although this seminal approach developed for treatment of certain infectious diseases with therapeutic radioisotopes has not entered the clinical arena, such a strategy may offer important possibilities for clinical therapy of special cases of viral and fungal disease which cannot be adequately treated by conventional technologies. Although the results of these impressive pre-clinical studies evaluating the effectiveness of treating infectious disease with 188Re-labeled antibodies, at the current time no clinical studies have yet been reported. These authors have also explored a similar approach for patient treatment of metastatic melanoma with the 188Re-PT1-6D2 antibody targeted to melanin expressed on the surface of melanoma tumor cells [226].

DISCUSSION

This goal of this paper has been to present a brief overview of the important established and developing clinical applications of 188Re which have been pursued in nuclear medicine, oncology and for other applications. Impressive results describing new 188Re radiolabeling strategies, radiopharmaceutical developments, preclinical testing and clinical introduction of new 188Re-laabeled therapeutic agents have been reported over the last three decades. More extensive information on the development and clinical evaluation of 188Re-labeled agents can be found in several reviews [106, 196, 227-230]. Current principal clinical efforts in this area are focused on the use of 188Re-HEDP for bone pain palliation and the use of a variety of 188Re-labeled arterial occlusive agents for therapy of inoperable HCC. Other developing future important clinical applications using 188Re are expected to evolve for the therapy of non-melanoma skin cancer, unique treatment strategies for infectious disease, for augmentation of the therapeutic effectiveness of chemotherapeutic agents for cancer therapy, and possible development of new 188Re-PSMA targeting agents for the treatment of recurring prostate cancer.
CONCLUSIONS

The routine, widespread use of 188Re-labeled therapeutic radiopharmaceuticals in clinical practice will be dependent on regulatory issues and the expected increased availability of GMP sterile, pyrogen free 188W/188Re generators and labeling substrate “kits”. In addition, the availability of 188Re in centralized radiopharmacies and the further development and commercial availability of regulatory approved 188Re agents are important factors which are expected to evolve as interest in the clinical use of 188Re increases.

AUTHOR STATEMENTS

The authors declare no conflicts of interest.

ACKNOWLEDGEMENTS

The authors express their thanks to colleagues and collaborators who have made their experiences using 188Re possible, and also their gratitude to the funding agencies which supported their research. In addition, the authors thank Dr. Nicolas Lepareur (Rennes, France) and Dr. Thomas Wendler (OncoBeta®, Garching, Germany) for providing Figures for inclusion in this paper. For ORNL Figures, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

REFERENCES

Kidney uptake of 186/188Re(V)-DMSA is significantly reduced when reducing agent is changed from stannous ion to metabisulfite. J Label Compd Radiol 2002; 45: 1-12.

[49] Lepareur N, Ardisson V, Noiret N, Garin E, Re-SSS/Lipiodol: Development of a Potential Treatment for HCC from Bench

[132] Knapp FF Jr. Use of Beta-Emitting Radioliodate Sources for Inhibition of Coronary Restenosis after High Pressure Balloon Angioplasty,* Invited Lecture, For, Categorical Seminar on Recent Developments in Therapeutic Nuclear Medicine, Annual Meeting, Society of Nuclear Medicine, Los Angeles, CA, June 6, 1999

https://doi.org/10.1016/S0969-8051(01)00228-1

https://doi.org/10.1186/1471-2385-2-1

https://doi.org/10.1007/s00259000544

https://doi.org/10.1089/108497802753773775

https://doi.org/10.1016/S0969-8043(03)00063-0

[208] Carrozza AM, Cipriani C, Donati P, Muscardin L, Sedda AF. Dermo Beta Brachytherapy with 188Re in Extramammmary

