Nanomaterial Sorbents for the Preparation of 188W/188Re Generator and 188Re Radiopharmaceutical Development

Madhava B. Mallia1, Rubel Chakravartiy, Ashutosh Dash1,* and Maroor Raghavan

1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085, India
2 Molecular Group of Companies, Puthuvype, Ernakulam-682508, India

Abstract: Rhenium-188 is a useful radionuclide for targeted therapy thanks to the high energy (2.12 MeV) β emission, low abundance gamma rays (155 keV and 15%) suitable for imaging and availability from the 188W/188Re generator. Though considerable amount of work on the development of 188Re-radiopharmaceuticals have been reported in the literature, the clinical uses of them are still low mainly due to the limited availability and high cost of the generators. However, a 188Re radiopharmacy can be successfully run provided the generator is used for the preparation of several 188Re-radiopharmaceuticals. The relatively low radioactive concentration of 188Re from conventional alumina based generators, thereby needing post elution concentration, is one of the limitations for the extended use of the generator. The development of nanomaterials having higher capacity for adsorption of 188W allows it to be used for the preparation of column generators capable of giving high radioactive concentration for the eluted perrhenate. This review provides an overview of the work done at the Bhabha Atomic Research Centre, Mumbai, India, for the development of 188W/188Re generator as well as the development of several 188Re-based radiopharmaceuticals.

Keywords: Nanomaterials, Radionuclide generator, Radiopharmaceuticals, Rhenium-188, Targeted therapy.

1. INTRODUCTION

Rhenium belongs to the group 7 of the periodic table, same as that of 99mTc, the workhorse of nuclear medicine. Rhenium has two important radioisotopes, 186Re [half-life – 3.71 days, E_{max} – 1.09 MeV, E_γ - 136 keV (9%)] and 188Re [half-life – 16.9 h, E_{max} – 2.12 MeV, E_γ - 155 keV (15%)][1], both of which have beta energies suitable for therapy and gamma emissions, though of low abundance, which permits monitoring the distribution of the radiotracer in vivo, and potentially, perform image-based dosimetry calculations. While relatively low-energy beta particles of 186Re are useful for therapeutic applications requiring low tissue penetration, high-energy beta from 188Re are particularly useful for therapy of diseases in large organs such as liver. Being in the same group of the periodic table, technetium and rhenium share similar chemistry, which implies, wherever applicable, it is possible to have theranostic pair with 99mTc and $^{186/188}$Re radionuclides. However, rhenium being more difficult to reduce than technetium, quite often, technetium chemistry cannot be directly extrapolated for preparing rhenium radiopharmaceuticals. Rhenium generally requires harsher radiolabeling conditions compared to technetium, and therefore, ligands that cannot survive these conditions cannot be used for preparing rhenium radiopharmaceuticals.

Rhenium-186 is a reactor-produced radionuclide from neutron activation of enriched 185Re or natural rhenium. A difficulty associated with the production of 188Re from natural rhenium is the co-production of 188Re. Though mixed radiation therapy with $^{186/188}$Re is feasible, the approach has not been further pursued. On the other hand, 188Re is a decay product of long lived 186W and hence available from a 188W/188Re generator. Like the 99mMo/99mTc generator, which has a major role in making 99mTc the workhorse of nuclear medicine, 188W/188Re generator has the potential to popularize the use of 188Re-radiopharmaceuticals for therapy.

Commercial availability of 185W/188Re generator has a significant role to play in popularizing the use of 188Re-radiopharmaceuticals in nuclear medicine. An equally important aspect is to make available new 188Re-radiopharmaceuticals and freeze dried kits for their preparation in hospital radiopharmacy housing the 188W/188Re generator. In this review, authors have attempted to cover the recent developments in 188W/188Re generator technology and discuss some of the important 188Re-radiopharmaceuticals, which have been used in the clinic or which have clinical potential. These discussions are mainly focused on the developmental activities done at the Bhabha Atomic Research Centre, India.

*Address correspondence to this author at the Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400 085, and India; Tel: 91-22-2559 5372; Fax: 91-22-2550 5345; E-mail: adash@barc.gov.in

E-ISSN: 2408-9788/17 © 2017 Cosmos Scholars Publishing House
2. DISCUSSION

2.1. Nanosorbents for 188W/188Re Generator Preparation

188W/188Re generator is an excellent source for availing no-carrier-added (NCA) grade 188Re. Most of the separation methodologies which have been reported for 99mTc generators have also been exploited for preparation of 188W/188Re generators [2]. Out of these procedures, the alumina based column chromatographic approach wherein 188W is absorbed on bulk alumina matrix and 188Re is selectively eluted using saline solution at regular intervals, has been identified as the most reliable method for the preparation of 188W/188Re generator. Owing to the limited sorption capacity of bulk alumina (~50 mg W/g), clinical-scale 188W/188Re generator can only be prepared using high specific activity (150-190 GBq/g) 188W that can be produced in only very few high flux ($\sim 10^{15}$ n.cm$^{-2}$.s$^{-1}$) reactors available (High Flux Isotope Reactor at Oak Ridge National Laboratory in United States and SM Reactor at Dimitrograd in Russia) in the world. Even while using high specific activity 188W produced in these reactors, the 188W/188Re generators currently available yield low specific volume (activity/mL) of 188Re and require post-elution concentration procedures prior to radiopharmaceutical preparation, which is not always very convenient to perform in hospital radiopharmacies [3]. From this perspective, it is desirable to develop a 188W/188Re generator where the concentration step can be avoided to simplify the operational procedure for widespread clinical utility.

Use of nanomaterials as adsorbents for 188W/188Re generator holds promise as they take advantage of the unique physicochemical properties realized at nanoscale that cannot be anticipated from bulk counterparts of the same chemical composition. The defining feature of a nanomaterial is that its properties depend not only on composition but also on its size and shape. One of the specific properties of this class of material is that a high percent of the atoms lies on the surface and the material possesses high surface area. These surface atoms are unsaturated and possess high chemical activity. Therefore, such materials demonstrate high sorption capacity and enhanced selectivity for 188W resulting in elution of 188Re with adequate radioactive concentration and high radionuclidic purity. The above properties make nanomaterials an exciting platform to develop into the realm of 188W/188Re generator technology with properties that are difficult to achieve using bulk materials.

The ability of three nanomaterial based sorbents (nanocrystalline titania (TiP), zirconia (ZrO$_2$) and alumina (γ-Al$_2$O$_3$)) have been comprehensively studied and profusely explored for the development of 188W/188Re generators by our group [4-7]. Taking advantage of the new physical properties uniquely associated with nanomaterials, 188W/188Re generators were prepared using 188W having specific activity of 3-5 Ci/g. A scrutiny of the results depicted in Table 1 reveals that all these sorbents are suitable for preparation of 188W/188Re generators. Though testing of these nanomaterials was done by using lower load of 188W, the capacity of the generator can easily be scaled up to >37 GBq (1 Ci) activity levels as the capacity of the nanomaterials are very high. Among all the sorbents used, γ-Al$_2$O$_3$ was found to exhibit the highest sorption capacity under dynamic conditions as compared to TiP and ZrO$_2$ and is therefore the most appropriate sorbent for the preparation of clinical-scale 188W/188Re generator. The performance of these generators was studied for more than 6 months and reported to be satisfactory. Not only were the 188Re elution yields appreciably high but also the level of radionuclidic, radiochemical and chemical impurities in the 188Re obtained from all these generators were well within the acceptable limits prescribed in the pharmacopoeias [8].

The mechanism of uptake of 188W and elution of 188Re from the nanosorbent based chromatographic columns could be explained on the basis of pH dependent surface charge on nanosorbents. There are various anionic species of tungsten depending on the pH of the medium. At pH 6, the predominant species is $\text{W}_{12}\text{O}_{41}^{10-}$ and between pH 2 and 4 the species $\text{W}_{12}\text{O}_{39}^{6-}$ predominates. Owing to electrostatic attraction, highly negatively charged tungsten anion is taken up on the positively charged surface of the nanosorbent under mildly acidic conditions. Subsequently, it may form a stable complex of the type [AlW$_6$O$_{24}$]$^{6-}$, similar to that reported for bulk alumina. As these tungstate ions start transforming into perrhenate ion ($^{188}\text{ReO}_4^{-}$), which has only the mononegative charge, the binding gets weaker and an easy displacement of $^{188}\text{ReO}_4^{-}$ is expected from the nanosorbent.

The performance of the 188W/188Re generators prepared using nanomaterial based sorbents is comparable with conventional alumina based generators in terms of 188Re elution yield and the purity of the eluate. However, due to higher sorption capacity
of nanomaterials, relatively lower specific activity 188W produced in medium flux research reactors can also be used for preparation of clinical-scale 188W/186Re generators while using such materials as the sorbent matrix. It is also pertinent to point out that agglomerated nanomaterials (comprising of nanosized crystallites) are used as sorbents for preparation of radionuclide generators. Typically, the size of the agglomerates is in the range of 50-100 mesh size (149-297 μm), which is comparable to the size of bulk alumina particles used in preparation of conventional generators. Controlled agglomeration of nanoparticles is essential in order to use them as sorbents for radionuclide generators, as fully dispersed nanoparticles would exhibit issues such as increased back pressure during the elution process and might also result in breakthrough of nanoparticles in the 186Re eluate. While using agglomerated nanomaterial based sorbents, no change in the generator design and the elution procedure is required.

Adoption of nanosorbents (especially γ-Al_2O_3) for preparation of 188W/186Re generator would reduce reliance on the two high flux reactors for 188W-production. There are a number of research reactors in the world having thermal neutron flux >5 × 10^{14} n cm^{-2} s^{-1} which could be used for the production of 188W for making 186W/186Re generators. Also if the existing generator manufacturers can shift to γ-Al_2O_3 as adsorbent, the generator capacity can be increased. Simultaneously the activity per mL can also be increased by using smaller bed size for the column and lower volume of eluent.

2.2. 186Re Based Radiopharmaceuticals

The Radiopharmaceuticals Division of the Bhabha Atomic Research Centre has been carrying out research on the development of 186Re radiopharmaceuticals for over 25 years. The following sections give details of some of the important developments.

2.3. 188Re(V)DMSA (DMSA – Dimercaptosuccinic Acid)

99mTc(V)DMSA is a widely used radiopharmaceutical for diagnostic imaging of medullary carcinoma of thyroid [9-11], head and neck tumors, [12, 13], soft tissue tumors and metastatic bone lesions and osseous metastasis from breast cancer [14-16]. Rhenium being the therapeutic analogue of 99mTc, which shares similar chemistry, envisaging use of $^{186/188}$Re(V)DMSA for therapeutic applications is obvious. Bisunandan et al. reported the first study on the preparation and use of 186Re(V)DMSA for tumor therapy [17]. Subsequently, several others reported the preparation and use of $^{186/188}$Re(V)DMSA for different cancers [18-20]. General approach for the preparation of $^{186/188}$Re(V)DMSA involves heating DMSA with Na$_2$^{186/188}ReO_4$ in presence of Sn$^{2+}$ at 100°C. Following this method, Kothari et al. reported the preparation of 186Re(V)DMSA and its biological evaluation in Wistar rats [21]. They observed significant uptake of the radiotracer in kidneys, which limited wide spread application of this therapeutic agent in the clinic. Attempts to reduce the kidney uptake of $^{186/188}$Re(V)DMSA using blocking agents were not successful [22]. Later, Kothari et al. found that significant reduction in kidney uptake of $^{186/188}$Re(V)DMSA could be achieved by modifying the method of preparation of the radiotracer. The 186Re(V)DMSA prepared using sodium metabisulphite (Na$_2$S$_2$O$_5$) as reducing agent in place of stannous chloride (SnCl$_2$), showed significant reduction in kidney uptake (only 0.68±0.06 %ID/g at 24 h post injection (p.i.)). It is pertinent to note that kidney uptake observed with $^{186/188}$Re(V)DMSA prepared by conventional method, using stannous chloride as reducing agent, was 2.93±0.93 %ID/g at the same time point [23]. Though the reason for this observation was not understood, authors observed a noticeable change in the isomeric ratio of the $^{186/188}$Re(V)DMSA complex. The high-performance liquid chromatography (HPLC) analysis of $^{186/188}$Re(V)DMSA prepared by conventional method using stannous chloride as reducing agent showed three major peaks representing anti, syn-endo and syn-

Table 1: Summary of 186W/188Re Generators Developed Using Nanosorbents

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>Dynamic Sorption Capacity (mg/g)</th>
<th>Activity of 186W Loaded (GBq)</th>
<th>Elution Yield of 186Re (%)</th>
<th>Maximum Radioactive Concentration of 186Re (GBq/mL)</th>
<th>Level of 186W Impurity in 186Re (%)</th>
<th>Radiochemical Purity of 186ReO$_4$ (%)</th>
<th>Consistency in Generator Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiP</td>
<td>100</td>
<td>1.85</td>
<td>> 80</td>
<td>0.37</td>
<td>< 10^{-3}</td>
<td>> 99</td>
<td>Consistent for 6 months</td>
</tr>
<tr>
<td>ZrO$_2$</td>
<td>120</td>
<td>1.85</td>
<td>> 78</td>
<td>0.33</td>
<td>< 10^{-4}</td>
<td>> 99</td>
<td></td>
</tr>
<tr>
<td>γ-Al_2O_3</td>
<td>326</td>
<td>11.1</td>
<td>> 80</td>
<td>1.85</td>
<td>< 10^{-3}</td>
<td>> 99</td>
<td></td>
</tr>
</tbody>
</table>
exo isomers, respectively, as shown in Figure 1(A) [24]. Apart from these major peaks, a minor peak representing an unknown structure was observed between the anti and syn-endo isomeric forms. Kothari et al. observed significant contribution from this peak in $^{186/188}$Re(V)DMSA prepared using sodium metabisulphite reducing agent [Figure 1(B)] [23]. However, it is not clear whether it has any correlation with reduction in kidney uptake and the phenomenon is worth investigating.

Recently, our group developed a lyophilized kit for the preparation of 188Re(V)DMSA at room temperature [unpublished results]. It is known that presence of oxalate facilitate reduction of rhenium, therefore the room temperature kit (RT kit) contained sodium oxalate in addition to other ingredients of conventional kit, i.e. DMSA and stannous chloride. Using this kit 188Re(V)DMSA could be prepared in >98% yield at room temperature in 15 min. Though HPLC analysis of 188Re(V)DMSA prepared using RT kit showed similar isomeric peak patterns, the isomeric ratios were different. The 188Re(V)DMSA prepared following the conventional method, by heating at 100°C for 30 min, had the anti, syn-endo and syn-exo isomers in the ratio 48:39:13, whereas, the 188Re(V)DMSA prepared using RT kit at room temperature had the isomeric ratios 48:29:23, respectively. It is interesting to note that experimental conditions had effect only on the syn-endo and syn-exo isomeric ratio and percentage contribution from the anti isomer remained same. This apparently small change in the isomeric ratio of 188Re(V)DMSA prepared using RT kit, however, had profound influence on the overall biodistribution pattern in Swiss mice bearing fibrosarcoma tumor. With 188Re(V)DMSA prepared following conventional method, we observed uptake in bone (15 %ID/g), kidney (3.2 %ID/g) and tumor (2.2 %ID/g) at 60 min p.i. Subsequently, the activity cleared from all organs and at 24 h p.i., the activity in bone, kidney and tumor were 2.8 %ID/g, 1.5 %ID/g and 0.2 %ID/g, respectively. Similarly, biodistribution of 188Re(V)DMSA prepared using RT kit showed initial uptake of 6 %ID/g, 1.8 %ID/g and 1.4 %ID/g in bone, kidney and tumor, respectively, at 60 min p.i. It could be noted that uptake values in these organs/tissue are relatively lower compared to the distribution of 188Re(V)DMSA prepared by conventional method at the same time point. However, at 24 h p.i. a significant increase in bone uptake (22 %ID/g) was observed, while the uptake values in kidney (1.2 %ID/g) and tumor (0.4 %ID/g) were similar to that of 188Re(V)DMSA prepared by conventional method.

In another experiment, 188Re(V)DMSA prepared using RT kit was heated at 100°C for 10 min. Subsequent HPLC analysis of the sample revealed that isomeric ratios changed from 48:29:23 to 48:38:14, which was very close to that of 188Re(V)DMSA prepared using conventional kit. This experiment possibly indicated higher thermodynamic stability of syn-endo isomer vis-à-vis syn-exo isomer. Proceeding further, we carried out biodistribution of 188Re(V)DMSA prepared by RT kit at room temperature and then heating it again at 100°C for 10 min. As expected, the biodistribution results were similar to the one obtained with 188Re(V)DMSA prepared by conventional method. These results indicate that higher bone uptake observed in the case of 188Re(V)DMSA prepared using RT kit at room temperature may be due to the syn-exo isomer. This interesting results advocate further investigation to understand the distribution of individual

![HPLC elution profile of $^{186/188}$Re(V)DMSA prepared using different reducing agents (A) stannous chloride and (B) metabisulphite [23].](image-url)
isomers. If an isomer was found to be suitable for a particular application, modification of reaction conditions to maximize the yield of that isomer could be the next logical step forward.

2.4. $^{186/188}$Re-HEDP (HEDP – Hydroxyethane 1,1-Diphosphonic Acid)

$^{186/188}$Re-HEDP is a clinically established palliating agent for bone pain due to osseous metastasis [25-31]. Initial HEDP studies were carried out using 186Re radioisotope. Rhenium-186 is a reactor produced radioisotope from neutron radiative capture (n,γ) reaction on enriched 185Re or natural rhenium (37.4% enriched in 185Re).

Kothari et al. reported preparation and evaluated 186Re-HEDP from 188Re produced from natural rhenium [32]. This was probably the first study, which used 186Re produced from natural rhenium in a medium flux (6×10^{13} neutrons/cm2/s) reactor. The 186Re-HEDP prepared under optimized conditions (pH - 2, SnCl$_2\cdot$2H$_2$O - 10 mg, HEDP – 50 mg, reaction temperature - 100°C, time – 30 min) was evaluated in normal Wistar rats. The distribution study showed significant uptake of 186Re-HEDP in bone (30.7 ± 0.04 %ID/organ at 3 h p.i.) and retention thereafter, throughout the duration of the study (29.5 ± 4.0 %ID/organ at 48 h p.i.). There was no significant uptake of activity in any other major organs. During optimization studies, authors observed that >98% radiochemical purity could be achieved with HEDP amount as low as 1.25 mg/mL, stannous chloride 0.4 mg and total rhenium content 100 μg, rest of the reaction conditions remaining the same. However, to achieve stability of 186Re-HEDP for extended periods, significantly higher amounts of the reactants were necessary. This observation was in agreement with a study reported by Elder et al., which established the influence of amounts of HEDP, stannous chloride and the total rhenium content on the final structure of Re-HEDP, and consequently, its biodistribution [33]. Use of natural rhenium resulted in, unavoidable, co-production of 188Re (Half-life – 16.9 h). Therefore, the authors cooled the irradiated sample for four days to reduce the activity of 188Re to ~6% of the total activity. Authors noticed, and highlighted, the practical difficulty with this approach of 188Re-HEDP preparation, since it resulted in significant reduction in 188Re-activity during the cooling period. By this approach, preparation of clinical dose of 188Re-HEDP was virtually impractical. As an alternative, authors proposed mixed radionuclide therapy with $^{186/188}$Re-HEDP, which could eliminate the 4 day cooling requirement. However, dosimetry of mixed radionuclide therapy approach with $^{186/188}$Re-HEDP was challenging, which probably limited its clinical applications.

With commercial availability of 186W/188Re generator, several studies using 186Re-HEDP were reported. A comparative clinical study of 186Re-HEDP, 188Re-HEDP, 153Sm-EDTMP and 89Sr by Liepe et al. demonstrated similar efficacy of these agents for palliation of pain from osseous metastasis [30]. The authors concluded that efficacy being comparable, choice of therapeutic radionuclide may be decided based on availability of the radioisotope and logistics. In this respect, 188Re-HEDP enjoyed clear advantage over the other pain-palliating agents based on reactor produced radioisotopes, since it can be prepared on demand in any hospital radiopharmacy housing a 186W/188Re generator.

The growth of nuclear medicine can be partly attributed to the availability of lyophilized radiopharmaceutical kits and 99mMo/99Tc generator. For a hospital radiopharmacy having a 188W/188Re generator, availability of lyophilized kits for the preparation of 188Re-radiopharmaceuticals is an advantage. Verdera et al. reported the first lyophilized kit for the preparation 188Re-HEDP [35]. Preparation of 188Re-HEDP requires addition of carrier rhenium to carrier-free Na188ReO$_4$ from 188W/188Re generator. This is essential to obtain the 188Re-HEDP species which shows the pharmacokinetics necessary for a bone pain palliating agent. Along with HEDP (10 mg), gentisic acid (3 mg) and stannous chloride dihydrate (3.7 mg), Verdera et al., included carrier potassium perrhenate (300 μg, ~1 μmol) in their lyophilized HEDP kit. Though the authors have not mentioned the shelf-life of such lyophilized HEDP kits, presence of stannous and carrier perrhenate together in the kit could significantly shorten the shelf-life of the kit.

Mallia et al. circumvented this problem of short shelf-life of the kit by excluding the carrier perrhenate from the HEDP kits [36]. While rest of the kit components and their amounts remained similar to that of the kit reported by Verdera et al., preparation of 188Re-HEDP using this kit required addition of 1 μmol of carrier perrhenate along with freshly eluted Na188ReO$_4$ from 188W/188Re generator. Subsequently, heating the kit vial at 100°C for 20 min resulted in the formation of 188Re-HEDP in more than 98% radiochemical purity. After adjusting the pH of the preparation to physiological conditions (using sterile sodium acetate
provided with the kit), the preparation is ready for patient administration. Shelf-life of this kit was one year from the date of production. Clinical evaluation of \(^{188}\)Re-HEDP prepared using these kits are being carried out in different nuclear medicine centres in India. The development of lyophilized HEDP kit in BARC is well-timed considering the increasing number of nuclear medicine centres in India offering \(^{188}\)Re-therapy.

2.5. \(^{188}\)ReN-DEDC/Lipiodol (DEDC – Diethyl Dithiocarbamate)

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and represents the second most common causes of cancer death worldwide [37]. Patients presented with late stage HCC, which are unresectable, are recommended for loco-regional therapies such as transarterial chemoembolization (TACE), selective internal radiation therapy (SIRT) or sunitinib therapy, depending on the stage of the disease [38]. SIRT is also called TARE or transarterial radioembolization. TARE is similar to TACE, the only difference being the use of radiation emitted from radioisotopes for therapy in former, while the latter uses chemotherapeutics. TARE using radiolabelled particles and colloids are one of the options for inoperable HCC patients. There are several options for doing TARE, which include \(^{90}\)Y-labeled particulates based on glass (TheraSphere®) or resin (SIR-Spheres®) and \(^{131}\)I- or \(^{188}\)Re-labeled lipiodol. Especially in India, high cost of \(^{90}\)Y-microspheres and non-availability of local substitutes has limited this mode of therapy to a very small group of patients who can afford it.

Wang et al. reported the preparation of \(^{188}\)Re-labeled lipiodol for TARE [39]. Their approach involved preparation of \(^{188}\)Re-EDTB (EDTB - N,N,N”,N”-tetraakis(2-benzyldiazoxy)methyl)-l,2-ethanediamine) and subsequent incubation with EDTB-lipiodol at 70°C for 2h. This procedure resulted in \(^{188}\)Re-lipiodol >98% yield. Biodistribution studies carried out in Sprague Dawley rats showed slow clearance of activity from liver, however, accumulation of significant levels of activity in lungs and kidneys severely limited its clinical applications.

Jeong et al. reported preparation and use of a lipiodol solution of \(^{188}\)Re-TDD (TDD - 2,2,9,9-Tetramethyl-4,7-diaza-1,10-decanedithiol) for therapy of liver cancer [40]. This method involved preparation of a lipophilic complex, \(^{188}\)Re-TDD, and subsequent extraction into lipiodol. Due to the lipophilic nature of the \(^{188}\)Re-TDD complex, it is retained in lipiodol phase. This radioactive lipiodol solution was used for TARE procedure. Though \(^{188}\)Re-TDD could be prepared in good yields and extracted into lipiodol, authors noticed that its retention in liver is not good enough to treat liver cancer patients. The same group subsequently reported a modified form of \(^{188}\)Re-TDD, \(^{188}\)Re-HDD (HDD - 4-hexadecyl-2,9,9-tetramethyl-4,7-diaza-1,10-decanedithiol), which showed higher retention in liver. Kumar et al. reported an IAEA-sponsored clinical study, which concluded that TARE with \(^{188}\)Re-HDD is safe and effective option for the therapy of inoperable hepatocellular carcinoma [41]. Lyophilized kits for the preparation of \(^{188}\)Re-HDD are available commercially.

Although, \(^{188}\)Re-HDD complex could be prepared in high yields with commercially available kits, extraction of the complex into the lipiodol phase was not satisfactory. Boschi et al. reported preparation of a lipiodol solution of \(^{188}\)ReN-DEDC (DEDC – diethyl dithiocarbamate) complex [42]. This approach was very similar to that of Jae Min Jeong et al. wherein a lipophilic \(^{188}\)Re-complex was prepared and extracted into lipiodol. The complex \(^{188}\)ReN-DEDC is prepared in two steps. First step involved preparation of \(^{188}\)Re-nitrido core, which was subsequently used for radiolabeling DEDC ligand to obtain \(^{188}\)ReN-DEDC complex. By this method, \(^{188}\)ReN-DEDC complex could be prepared in >97% radiochemical purity and >96% extraction of the complex into lipiodol could be achieved. Clinical trials with \(^{188}\)ReN-DEDC/lipiodol showed retention of activity in liver with no activity accumulation seen in lungs, kidneys or any other vital organs.

Considering increasing number of liver cancer incidences in India, a need for locally available, effective and economical TARE agent was felt. Following the procedure reported by Prof. Duatti’s group, we developed a two-vial kit for the preparation of \(^{188}\)ReN-DEDC. First kit vial used for the preparation of \(^{188}\)ReN core, contained 2 mg of DTCz (N-methyl-S-methyl-dithiocarbazate), 28 mg of sodium oxalate and 0.8 mg of stannous chloride dihydrate. The second kit contained 27 mg of DEDC and carbonate buffer (1 M). The procedure involved addition of up to 3 mL of freshly eluted Na\(^{188}\)ReO\(_4\) containing 150 μL of glacial acetic acid to the kit vial 1. Upon incubating at room temperature for 30 min, \(^{188}\)ReN core could be prepared in >90% yield. In the second step, kit vial 2 was reconstituted with 2 mL of sterile saline and 1.5 mL of the solution is aseptically transferred to kit vial 1.
Subsequently, kit vial 1 was heated at 70°C for 20 min to obtain 188ReN-DDC complex. Analysis of the reaction mixture showed that 188ReN-DDC complex was formed in >80% purity. In the third step, 1-2 mL of sterile lipiodol was added to kit vial 1, the contents were thoroughly mixed for 5 min and subsequently centrifuged for 10 min to effect separation of the two layers. The lipiodol layer containing the 188ReN-DDC complex was carefully separated and used for TARE. The SPECT/CT images obtained during preliminary clinical trials using 188ReN-DDC/lipiodol, carried out in Tata Memorial Hospital, Mumbai, showed retention of the 188Re-activity in liver 24 h p.i., with no detectable accumulation of activity in lungs or kidneys. A regulatory clearance to manufacture and supply the kits in India is underway.

2.6. 188Re-Agents for Radiation Synovectomy

Radiation synovectomy is an effective treatment for rheumatoid arthritis [43-46]. This modality, which is an alternative to surgical intervention, involves intra-articular injection of beta emitting radiopharmaceutical to control the synovial inflammation. A critical requirement of radiation synovectomy agents is their ability to localize at the point of injection, since leaching of the agent will render the therapy ineffective. A general approach to minimize the effect of leaching is to use a short-lived radioisotope such that therapeutic dose can be delivered at the point of inflammation in a short span of time. Another approach to minimize leaching is to use radiolabeled particles with larger size [47].

Yttrium-90 and 32P are two radioisotopes commonly used for the preparation of synovectomy agents [48, 49]. Both radioisotopes have high-energy beta emissions suitable for synovectomy applications. However, being pure beta emitters, both radioisotopes exclude the possibility of imaging to assess localization of the injected radiopharmaceutical. Additionally, the 14 day half-life of 32P is too long and in the event of leaching it may result in radiation dose to other organs/tissues. In this context, 188Re has significant advantages over both 90Y and 32P, owing to its favorable physical and chemical properties described in section 1. Additionally, it has relatively short half-life (16.9 hours) and it is a generator produced radioisotope. Preparation and evaluation of 188Re labeled microspheres and 188Re-sulphur colloids was reported earlier [50-53]. However, significant leaching from the site of injection severely limited their application. Hydroxyapatite (HA), a major component of the bone matrix, had been radiolabeled with 186/188Re for synovectomy applications [54, 55]. However, these agents exhibited poor in vitro stability, which limited their application.

Kothari et al. reported direct labeling of HA with 188Re [47]. Their method involved incubation of freshly eluted Na188ReO4 with HA (10 mg), sodium oxalate (10 mg) and stannous chloride (10 mg) at room temperature for 1 hour. The pH of the solution was maintained at 1.4 using hydrochloric acid. Subsequently, the 188Re-HA particles were washed with ascorbic acid to remove free perrhenate and re-suspended in ascorbic acid medium. By this method, 188Re-HA particles could be prepared in >98% yield. Authors observed that presence of oxalate significantly reduced the dissolution of HA under acidic conditions. Particle size of cold Re-HA, determined by laser diffraction, was found to be between 2-20 µm (>90%). 188Re-HA particles were found to be stable in ascorbic acid medium for up to 4 days. Upon intraarticular injection of 188Re-HA particles in rat joints, extra-articular leakage of only 2.5% was observed even after 2 days post injection. Overall, this study demonstrated the potential of 188Re-HA particles for therapy of inflamed synovial joints.

2.7. Miscellaneous 188Re-Radiopharmaceuticals

2.7.1. 188Re-Skin Patches

Application of radioactive skin patches is an effective mode of therapy for skin cancers and superficial tumors [56]. This modality is an alternative to teletherapy, brachytherapy or kilo voltage x-ray therapy for the treatment of superficial cancers. Papers or skin patches incorporating beta emitting radionuclides such as 188Re or 166Ho has been reported earlier [57-59].

Mukharjee et al. reported a modified procedure for the preparation of 188Re-bandage patch [60]. Their method involved preparation of 188Re-tin colloid followed by trapping of the radioactive colloidal particle on to a 0.22 µm Millipore filter by passing the solution through the filter. The filter paper was subsequently sandwiched between two nitrocellulose membranes and then placed on an adhesive bandage for therapeutic applications. Radioactive bandages thus prepared were evaluated in melanoma tumor bearing C57BL/6 mice. The study conclusively demonstrated the efficacy and potential of 188Re-bandages for the therapy of superficial tumors [Figure 2].
2.7.2. $^{188}\text{Re-EC (EC-Ethylene Dicystene) for Endovascular Therapy}$

Restenosis is an event with significant probability following coronary angioplasty [61, 62]. One of the procedures followed to avoid/minimize restenosis of dilated artery by balloon angioplasty is by local delivery of radiation dose to the dilated arteries [63-65]. Dose delivery is generally achieved using balloon filled with radioactive solution by a procedure similar to balloon angioplasty. One of the inherent risks in this procedure is the rupture of balloon during the procedure leading to leakage of the radioactive liquid into circulation. Therefore, the pharmacokinetics of the radiotracer should be such that in the event of a balloon rupture, the activity should clear from the body within a short period of time, such that dose burden on the patient could be minimized. A comparison between Na$^{188}\text{ReO}_4$, $^{188}\text{Re-MAG}_3$ and $^{188}\text{Re-DTPA}$ for this application revealed that $^{188}\text{Re-MAG}_3$ is most suitable for the purpose [64]. However, the long-term stability of $^{188}\text{Re-MAG}_3$ is doubtful [66].

Das et al. [67] reported the preparation of $^{186/188}\text{Re-EC}$, an analogue of $^{99m}\text{Tc-EC}$, which is a clinically used renal agent, as a substitute for $^{188}\text{Re-MAG}_3$. Optimized procedure for the preparation of $^{186/188}\text{Re-EC}$ involved incubation of a mixture of 10 mM solution of EC with stannous chloride (2 mg) and Na$^{186/188}\text{ReO}_4$ at 100°C for 20 min. The pH of the reaction mixture was maintained at 2. By this method, $^{186}\text{Re-EC}$ could be prepared in >98% radiochemical purity. Biodistribution studies of $^{186/188}\text{Re-EC}$ carried out in Wistar rats indicated that in terms of clearance and dose delivered to other vital organs, $^{186/188}\text{Re-EC}$ had distinct advantages over other rhenium agents used for endovascular brachytherapy applications. In addition, $^{186/188}\text{Re-EC}$ was also found to retain its radiochemical purity for a longer time compared to $^{188}\text{Re-MAG}_3$.

2.7.3. $^{186}\text{Re-CTMP (CTMP – 1,4,8,11-Tetraaza Cyclo-tetradecl-1,4,8,11-Tetramethylenephosphonic Acid) for Bone Pain Palliation}$

Phosphonates have shown good affinity for bone matrix and they have been utilized to deliver therapeutic dose of radiation to pain causing metastatic or primary bone lesions to obtain palliative effect to the patients. A number of phosphonates radiolabeled with beta emitting radionuclides such as ^{186}Re, ^{188}Re, ^{153}Sm, ^{177}Lu etc. have been prepared and evaluated [25-34]. A number of such phosphate radiopharmaceuticals are in clinical use today.

Kothari et al. had earlier reported the preparation and evaluation of $^{186/188}\text{Re-HEDP}$ for bone pain palliation [32]. The same group reported synthesis, radiolabeling and evaluation of a cyclic phosphate for bone pain palliation [68]. Starting from cyclam (1,4,8,11-tetraaza cyclotetradeclane), formaldehyde and orthophosphoric acid, a tetra phosphate ligand, 1,4,8,11-tetraaza cyclo-tetradecl-1,4,8,11-tetramethylene phosphonic acid or CTMP, was synthesized. This ligand was subsequently radiolabeled with Na$^{186}\text{ReO}_4$ by heating at 100°C for 30 min in presence of stannous chloride as reducing agent. The pH of the reaction mixture was maintained at 2. By this procedure, $^{186}\text{Re-CTMP}$ could be prepared in >97% RCP. Authors observed that $^{186}\text{Re-CTMP}$ complex remained stable at room temperature for up to 6 days post preparation. Biodistribution of $^{186}\text{Re-CTMP}$ in normal Wistar rats showed significant uptake and retention of the complex in skeleton with fast clearance from other non-target organs. A comparison with $^{186}\text{Re-HEDP}$ indicated that the pharmacokinetic parameters of $^{186}\text{Re-CTMP}$ are either similar or superior to the former [Figure 3]. Overall, $^{186}\text{Re-CTMP}$ complex demonstrated its potential as a possible bone pain palliating agent.

2.7.4. $^{186/188}\text{Re-Labeled Porphyrin for Targeted Radiotherapy}$

Porphyrin is a structural unit central to the oxygen transporter in our body, the hematoporphyrin. Porphyrins have shown preferential accumulation in neoplastic tissues, lymph nodes, embryonic and traumatized tissues [69-72]. This property made them potential molecules for diagnosis and therapy of various diseases such as cancer [69-77]. Wong et al. reported a $^{99m}\text{Tc-hematoporphyrin}$ for in vivo imaging applications [78]. In this complex, ^{99m}Tc was tagged at the periphery of the porphyrin ring. Thereafter, several studies were reported wherein different derivatives of porphyrins were radiolabeled with radioisotopes such
as 57Co, 64Cu, 109Pd etc. [79-81]. A notable difference between the 99mTc-hematoporphyrin and the 57Co/64Cu/109Pd-porphyrins is that in the latter, the metal atom (57Co, 64Cu or 109Pd) occupied the centre of the porphyrin ring. However, 57Co/64Cu/109Pd-porphyrin derivatives failed to show selective uptake in target tissue. This observation possibly indicates that the porphyrin significantly lose its ability to accumulate in tumor ones a metal atom occupy its core.

Banerjee et al. reported the synthesis of a water-soluble porphyrin, meso-tetakis[3,4-bis(carboxy methylenoxy)phenyl] porphyrin, and subsequently radiolabeled it with $^{186/188}$Re [82]. Radiolabeling was carried out under basic conditions (pH 9) in presence of stannous tartarate as reducing agent. Upon heating the reaction mixture at 100°C for 30 min, the $^{186/188}$Re-porphyrin complex could be prepared in >98% yield. Biodistribution studies of $^{186/188}$Re-porphyrin complex in Swiss mice bearing fibrosarcoma tumor showed uptake in tumor (~3.5% ID/g), and retention till the duration of the study (24 h). Authors observed no significant accumulation of activity in any other vital organ. Major clearance of activity was through renal route.

CONCLUSIONS

Availability of radionuclides at affordable cost is one of the important considerations for the growth of nuclear medicine. The initial investments needed to start a program and adequate revenue returns from it are prime considerations. Considering relatively high cost of 188W/188Re generator it is important to use the generator for as many applications as possible. Therefore, improving 188Re-radiopharmaceutical portfolio is highly essential. Despite the fact that the rhenium radiopharmaceuticals development program was initiated at the Bhabha Atomic Research Centre in the early nineties, clinical utility was limited due to the lack of interest shown by nuclear medicine departments. A new fillip to the program was provided by the entry of Kovai Institute of Medical Sciences (KMCH) which started the routine clinical use of 188W/188Re generator for the treatment of HCC and a collaborative program between BARC and KMCH. One of the newer developments thanks to this collaboration is the development of lyophilized DEDC kits for the preparation of 188ReN-DED/Re lipiodol for the therapy of inoperable HCC. Along with lyophilized DEDC kits, other lyophilized kits for the preparation of 188Re-HEDP, 188Re-DMSA etc. will help in effective utilization of 188Re-activity from 188W/188Re generator. The authors also feel it appropriate that the commercial manufacturers explore the utility of high capacity adsorbents discussed in this paper for making generators with higher load of 188W which will provide high activity per mL for the eluted perrhenate solution.

REFERENCES

Figure 3: Scintigraphic images of 188Re-CTMP and 188Re-HEDP [68].

Nanomaterial Sorbents for the Preparation of 188Re90Y Generator

International Journal of Nuclear Medicine Research, 2017

77

