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Abstract: Nonlinear dynamical systems with R( ) symmetry are shown to behave in a very interesting manner under a 
new transformation of dynamical variables. Such property helps to identify the phase dynamics embedded in the system but 
preserves the basic property of the attractor intact. This is very similar to those phenomenon discussed with the help of 

covering transformation in the literature. The Poincare sections obtained are identical to those obtained through covering 
transformation and hence indicate to a similar topological structure and identical dynamical characteristics. 
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1. INTRODUCTION 

In recent times it has been found that a wide class of 

physical phenomena in physics, biology and medicine 

can be either modeled or explained with the help of a 

globally coupled network of phase oscillator. Such 

models were initially discussed by Kuramoto [1], 

WinFree [2],and Watanabe [3] and some other authors. 

These special type of phase oscillators with nonlinear 

couplings between them- selves do play a very 

important role for studying the process of 

synchronization in a very large net- work of such 

objects which has very important implications in 

explaining the phenomena of pedestrians on a foot 

bridge[4], neuronal population behavior [5] etc. On the 

other hand in the usual study of nonlinear dynamical 

system the models we use have both the amplitude 

and phase dynamics entangled together. So one 

possible approach is to derive the equation of the 

corresponding phase dynamics by a standard 

procedure say variational approach. Our goal in this 

paper is to suggest an alternative approach to study 

such phase in standard nonlinear 3D models. In this 

respect it may be noted that the detection of phase 

either from the nonlinear equation itself or from the 

corresponding data both are not very straight forward. 

Identification of the phase of the chaotic time series 

was a perineal problem for a long time. Initial break 

through regarding its identification and analysis of 

phase synchronization was done by Pikovsky, 

Rosenblum, Kurth [6]. The identification of phase have 

been the easiest in case of Rosseler attractor which 

has a a single center of rotation. This is clearly seen 

from the projection in phase space. On the other hand  
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if no such visual or geometrical aid is available, the 

famous approach of empirical mode de-composition, 

discovered by Huang et.al. [7], is seen to be 

applicable. But it is a well-known fact that the Lorenz 

attractor shows two center of rotation. Thus technique 

applicable to Rosseler system does not hold well in 

Lorenz system [8]. But a simple trick can do the job. 

One just gets the attractor in the  

plane, where it exhibits one center of rotation and 

Rosseler approach becomes applicable, in these new 

variables. So it was our idea to study the Lorenz 

system in these new set of variables; 

  
u = x

2
+ y
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v = tan
1 y

x
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Where the mother equation is written as 

   
x = ( y x)  

  
y = r x y x z  

  
z = x y b z            (2) 

It is observed that the new nonlinear system, in the 

variables (u, v, z), shows some remarkable prop- erties 

along with the fact that it has an well defined phase 

from the beginning. In general the transformation of 

non-linear systems were done long back by Miranda 

and Stone [9] to determine some cover or dou- ble 

cover of dynamical system to see the mapping 

between different forms of attractors in different phase 

space variables. It may be mentioned that after a 

lapse of almost seven years the same transformations 

were used by Gilmore and Letellier [10, 11] to study in 

detail the topological properties associated with the 

chaotic systems. They have made some important 

observations regarding the structure of templates, 
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under such covering transformation. The most 

important and significant fact is that though our 

transformation is different from the type discussed in 

reference [10, 11], yet it has got some interesting 

consequences for the new non-linear systems so 

produced. 

Incidentally we have also applied this 

transformation to Bark-Shaw [12] and Dual Lorenz 

equation, and observed that they behave in the same 

manner. In this connection it may be mentioned that 

in the paper of C. Letellier et al. [10, 11], it was 

observed that simple symmetry properties of non-

linear equations can help to classify the different 

nature of the attractors and give some clues to their 

properties. The Lorenz equation is known to have 

symmetry;  and some other 

equations also do belong to this class. C Letellier et 

al.[10] called such a system to have  symmetry. It 

is easy to observe that Bark Shaw and Dual Lorenz 

also behave in same fashion. 

In this communication we have transformed each of 

these equations with the help of transformations defined by 

Eq. (1) and have analyzed them completely. It is 

observed that other than the determination of the 

phase directly which was the main contention, the 

Poincare map of the transformed Lorenz and other 

equations under consideration behaves exactly in the 

same way as observed by G Bryne et al.[11], though 

the equations obtained after the transformations are 

widely different. 

2. FORMULATION 

Consider the Lorenz system written in Eq. (2) and let 
us make the change of variable given by Eq. (1), 
whence one gets 

   
u =

+ r z

2
u sin(2v) u cos2 (v) u sin2 (v)  
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1

2
sin(2v) + (r z) cos2 (v) sin2
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2
sin(2v) b z           (3) 

The fixed point equation leads to 
  
(u = 0,v =

2
, z = 0)  

and 
  
(u = 0,v = tan1 1

, z = 0).  The corresponding 

Jacobian around the fixed point is  

j =

+ r z

2
sin(v) cosz (v) u sinz (v) A u

sin(2v)

2

0 B cosz (v)

u sin(2v) uz cos(2v) b

             (4) 

where  

  
A = ( + r z)u cos(2v) + u sin(2v) u sin(2v)  

  
B = ( 1)cos(2v) (r z) sin(2v) sin(2v)        (5) 

For the critical condition 
 
(0,

4
,0) , the eigenvalues 

are
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2
. For the second case the 

eigenvalues are 
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The nature of chaotic behavior is very simply 

reflected in these values when numerical solutions are 

done for  

Our numerical simulation starts with the phase 
space diagram of the attractor shown in (Figure 1b). 

For the parameter values 
  
r = 28.0 , = 10.0,b =

8

3
. It is 

interesting to observe that the form of the attractor in its 

projection in the plane shows a single center of 

rotation insisted of two center in the original Lorenz 
equation (Figure 1a). It may be pointed out that the 
same kind of result was reproduced by Gilmore et al. 
and Miranda et al. for Lorenz system. To illustrate the 

monotonic behavior of the variable v, its time series is 
displayed in Figure (2). In Figure (3), we show the 

bifurcation diagram for u with respect to the 

parameter , which shows clearly the positions of 
periodic windows. 

To characterize the nature of the new system Eq. 
(3), we next compute all the Lyapunov coefficient for 

the parameter values 
  
r = 28.0 , = 10.0,b =

8

3
, these are 

depicted in Figure (4). One can easily observe that we 
have one positive, another almost zero and third one 
negative which was basic property of the Lorenz 
system. To extract more interesting properties of the 
transformed system, we have computed the Poincare 

section for 
  
r = 28.0 and r = 65.584 . Other parameter 

values are kept the above mentioned values. The 
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corresponding situations are shown in Figures (5a) and 
(5b). One should note the striking similarity of this 

figure with that obtained in [11] for same values of r 

which are obtained through covering transformation. As 
is well known that similarity of Poincare map gives 
same set of symbolic sequence and in turn will lead to 
similar types of template. 

 

Figure 3: The bifurcation diagram of transformed system for 

  
0.0,400.0 , r = 28.0,b

8

3
.  

 

Figure 4: Lyapunov exponent of the transformed system for 

=10.0,r=28.0,b=8/3 

Next consider Burke-Shaw system written as, 

   

x = s(x + y)

y = y s x

z = s x y + v

          (7) 

 

Figure 1: (a) Lorenz attractor at 
  
r = 28.0, = 10.0,b =

8

3
. (b) Attractor for the transformed Lorenz system, given by equation-3, 

at = 10.0, r = 28.0,b =
8

3
. 

 

Figure 2: (a) Variation of  with time. (b) Variation of 
  
Mod(v, 2 )with time  
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One can immediately see that Eq.(5) has the same 

symmetry 
  
(x, y, z) ( x, y, z) . The transformed 

equation in this case is written as  

u =
s(1+ z)

2
u sin(2v) su cos2 (v) u sin2 (v)

v =
s 1

2
sin(2v) + s sin2 (v) s z cos2 (v)

z =
s

2
u
2 sin(2v) +V

      (8) 

In Figure (6), we show the projection of its 

attractor for the parameter values 
  
(s = 10.0,v = 4.271) . 

This again shows a single center of rotation. It may be 

added further that same phenomena is repeated in 

case of Lu system [13]. 

 

Figure 6: Attractor of the transformed system of Bark-

Shaw attractor at s=10.0 and v=4.2 

3 CONCLUSION AND DISCUSSION 

In our above discussions we have studied a very 

simple cylindrical transformation for some 3D systems 

with R( ) symmetry. Our transformation has the unique 

feature that it unfolds the phase dynamics embedded 

inside the system. Topologically speaking it exhibits 

features similar to the covering transformation already 

discussed in the literature. These properties are 

analyzed with the study of the corresponding Poincare 

map and Lyapunov exponent. It may be added that 

existence of similar type of Poincare map implies a 

similar type of symbolic dynamics which in turn controls 

the dynamics of the attractor. An interesting and 

important application of this transformation will be in 

the analysis of phase synchronization in coupled 

nonlinear oscillator systems. Such study is in progress 

and will be reported in future communication. In each 

case, the transformed system exhibits the same feature 

as obtained via covering transformation discussed in 

detail previously. The similarity is exhibited through the 

detailed study of the Poincare map and the Lyapunov 

exponent. 
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