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Abstract: High-
 
T

c
 superconductors are characterized by a short coherence length 

 0
. From the quasi-2D structure of 

these compounds, we calculate the density of states 
  
n( ) , the Fermi velocity 

 
v

F
 and the gap energy 

 
(0) . From these 

parameters, we deduce a formula of the coherence length 
 0

. We study the effect of the phonon-interaction 
 
V

p
, the 

effective mass of carriers  m  and the Coulomb repulsion 
 
V

C  on the coherence length 
 0

. We show that when the 

coupling constant 
p

 is in the range 0.06 – 0.30 and the effective mass  m  is between 2m0 and 6m0 (m0 is the free 

electron mass), the values obtained of the coherence length and the gap energy are in a good agreement with 
experimental results. 
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1. INTRODUCTION 

The short coherence length is one of the key 
parameters describing the superconducting state. In 
the conventional superconductors, the coherence 

length  is about (  103 – 104 ), but in high-T
c

 

superconductors,  is in the range (9 – 40 ). 

Experimental results show that short coherence lengths 
have been obtained for of high-

 
T

c
 Cu oxide 

superconductors: 16  for YBa2Cu3O6+x [1, 2], 13.6  
for Tl-2223 [3], 9.7  for Bi-2223 and 9 ± 1  for Bi-
2212 [4]. For lanthanum compound La2-xSrxCuO4, if we 
estimate the coherence length between 20  and 40 , 

the ratio   
/ a  is about 5 – 10 and about 2.5 – 4 for 

other cuprate superconductors (the lattice parameter is 
about  a 4 ). Several other exotic superconductors 

have nearly the same ratios   
/ a   2.5 – 3.5 [5]. These 

results are very smaller than the typical ratios   
/ a  of 

103 for the conventional superconductors. In BCS 
theory, the coherence length can be calculated from 

the expression 
  

0
= v

F
0( )  where 

F
v  is the Fermi 

velocity and 
 

(0)  the gap energy which is directly 

related to the superconducting transition temperature 

 
T

c
 (

 
2 (0) = Rk

B
T

c
).  

In conventional superconductors 
 
R

BCS
 = 3.53, but 

for the new superconductors, the parameter  R  
increases with the superconducting transition 

temperature  
T

c . The coherence length can be also 
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evaluated from the formula 
  0

= bv
F

/ RT
c

where 

  
b = 2 / k

B
. From this formula, we can see that the 

small values of the Fermi velocity 
F
v , the large value 

of  R  and 
 
T

c
 contribute to the decrease in 

 0
. The 

coherence length 
 0

 depends strongly on the Fermi 

velocity, on the superconducting gap ratio R  and on 

 
T

c . To describe the coherence length, it is important to 

know the experimental values of 
 

(0)  or  R  and T
c

. 

Experimental results show that high-
 
T

c
 

superconductors have large gap energy 
 

(0)  which 

leads to large superconducting gap ratio 

  
R = 2 (0) / k

B
T

c
[6-13]. These values show that the 

parameter R increases with the superconducting 
transition 

 
T

c
 and reaches its maximum R  = 13 at 

 
T

c
 = 

135 K for mercury compound Hg-1223. The 
experimental values of the gap energy of the electron-
doped cuprates are summarized in Table 1.  

The large value of 
 

(0)  or  R  leads to the decrease 

in coherence length 
 0

. In the van Hove scenario, 

many works, sometimes for isotropic s-wave and other 
times for d-wave pairing, have been proposed to 
explain the large value of  R [14-20]. In all these works, 
R is around 3.64 – 3.96 for isotropic s-wave and is in 
the range 4 – 5 for d-wave pairing. The deviation of  R  

from the BCS value (
 
R

BCS
= 3.53) is still not 

understood. For this reason, we deduce the expression 
of the coherence length by using the gap energy 

 
(0)  

instead of the superconducting gap ratio  R . 

For the conventional superconductors, the Fermi 
velocity is large and of order (1 – 2) 108 cm.s-1, but it is 
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very small for the cuprates. Using experimental values 
of R, T

c
 and 

0  in BCS expression, we obtain the 

Fermi velocity 
 
v

F
 in the range (1 – 2) 107 cm.s-1. For 

the lanthanum compound La2-xSrxCuO4 with the gap 

energy 
 

(0)  = 17.5 meV and the Fermi velocity v
F

= 2 

107 cm.s-1, we obtain 
 0

 = 23.977 . Since the lattice 

parameter  a  in CuO2 plane, is about 4  and the 
experimental values of the gap energy 

 
(0)  about  

15 – 19 meV, the ratio a/  is in the range 5.52 – 

6.99. 

In BCS theory, the Fermi surface is spherical and 
the density of states has been considered constant. For 
the new compounds, the Fermi surface is square and 
the density of states diverges at the singularity. We can 
see that the short coherence length in these new 
compounds is essentially due to a small value of the 
Fermi velocity, although the large value of 

 
(0) or R , 

contributes to the decrease in the coherence length 
 0

 

(
  0

v
F

/ RT
c

).  

These new compounds are doped materials, with 
superconducting transition temperature 

 
T

c
 depending 

strongly on the hole concentration  x . The critical 

temperature T
c

 increases with x  and reaches its 

maximum at optimum doping 
 
x

op
 while the coherence 

length 
 0

 decreases with  x  and reaches its minimum 

at 
 
x

op
. All the known high-

 
T

c
 superconductors have 

conducting CuO2 planes separated by insulating layers. 

Many experimental results [21-24] have identified the 
presence of saddle point (SP) in the band structure 
energy. These saddle points produce a van Hove 
singularity in the density of states. At optimum doping, 
when the Fermi level lies to the van Hove singularity, 
the gap energy 

 
(0) and the superconducting gap ratio 

 R  are maximum [20] while the coherence length 
0

 is 

minimal. When the van Hove singularity is displaced 
from the Fermi level,  R  and 

 
T

c
 decrease while 

 0
 

increases. The origin of high-
 
T

c
 superconductors is still 

controversial and the role of these singularities in the 

mechanism of high-
 
T

c
 superconductivity is not yet 

established. Near the singularity, the density of states 
diverges and even weak interaction can produce a 

large effect on 
 
T

c
. The van Have singularity leads to 

the magnetic excitations [25] which play a fundamental 
role both in normal and superconducting states [26]. 

For these new superconductors, there is 
coexistence between superconductivity and two 
dimensional antiferromagnetism characterized by a 

short magnetic correlation length 
 m

 decreasing with 

concentration x . For lanthanum compound La2-

xSrxCuO4 and bismuth compounds, it has been shown 

that the superconducting transition temperature   
T

c
(x)  

and the Neel temperature   
T

N
(x)  disappear together 

when it becomes metallic for higher x  value. This 
suggests that magnetic excitations can give an 
attractive interaction between two electrons or holes 
[27]. It is often assumed that there is a straightforward 
competition between nearly antiferromagnetic models 

Table 1: Experimental Values of the Gap Energy for Different Copper Oxide Based Superconductors  

Compounds 
 
T

c
 (K)  

(0)  (meV) R  References 

La2-xSrxCuO4 33 

39 

12.5 ± 0.5 

17.5 ± 1.5 

8.9 ± 0.2 

10.3 ± 0.9 

6 

7 

YBa2Cu3O6+x 89 39.5 ± 1.5 10.6 8 

Bi2Sr2CaCu2O8+x 

 

86  

92 

91 

41± 4 

36 ± 2 

32 ± 3 

11 ± 1.0 

9.0 ± 0.5 

8.1 ± 0.8 

9 

10 

11 

Bi2Sr2Ca2Cu3O10+x 110 

110 

48 ± 5 

43 ± 5 

10 ± 1.0 

9.1 ± 1.0 

9 

12 

Tl2Ba2CuO6+x 92.5 

90 

43 ± 4 

37 

10.7 ± 1.0 

9.5 

8 

HgBa2CuO6+x 

 

96 

97 

44 ± 4 

33 

10.6 ±1.0 

7.9 

8 

13 

HgBa2CaCu2O8+x 123 50 9.5 13 

HgBa2Ca2CuO8+x 130 

135 

60  

75 

10.6  

13 

8 

 13 
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and VHS model of superconductivity, with one 
excluding the other [28]. The searchers have serious 
problems with the two classes of phenomenological 
theories: the marginal Fermi liquid (MFL) and 
antiferromagnetic Fermi liquid (AFFL). It has been 
believed that these two theories have inconsistencies. 
MFL model could follow from the VHS theory, but only 
if the Fermi level coincides with the VHS. The 
antiferromagnetic models seem to describe well the 
magnetic phase (low doping regime), while the VHS 
model seems to work well near the optimum doping. 
There is no universally accepted model of the physics 
associated with VHS, however this model can explain 
main electronic properties of these compounds. The 
VHS model is studied in more details in Ref. 28. 

In 1987, Labbé and Bok [29] suggested that a 
logarithmic singularity in the density of states explain 

the high 
c
T  and the small isotope effect. With the tight-

binding model on a two-dimensional square lattice, Bok 
[30] has calculated the average of the Fermi velocity 
and obtained an approximate formula of the coherence 

length 
0

 ( )0(/0 aD , where D is the width of 

singularity and (0)  the gap energy). The coherence 

length depends on the ratio 
 

(0) / D . This ratio is very 

small in conventional superconductors 

( 410/)0(
F

), but large in high-
 
T

c
 

superconductors. It is necessary to calculate this 
parameter which is not calculated in Ref. 30. 

To study the properties of the coherence length of 

high- T
c
 superconductors, it is important to know the 

Fermi velocity 
 
v

F  and the ratio 
 

(0) / D . These 

parameters are well known for the conventional 
superconductors.  

In this paper, we develop a previous work 
describing the gap energy [31] to study the coherence 

length 
 0

. We calculate the density of states 
 
n( ) , the 

Fermi velocity and the ratio  (0)/D by using the quasi-
free electron model. From these parameters, we 

deduce a formula of the coherence length 
 0

. We 

study the effect of the phonon-interaction 
 
V

p
, the 

effective mass of carriers  m  and the Coulomb 
repulsion 

 
V

C
 on the coherence length 

 0
. In the weak 

coupling limit, we obtain short coherence length in a 
good agreement with experimental results.  

2. CALCULATION OF THE DENSITY OF STATES 

We know that pure superconductors metal such Al, 
In, Nb, Pb, Sn, and Zn are very described in the free 
electron model. For two-dimensional square lattice in 
this model, the density of states is constant. But for the 

new superconductors, the presence of the saddle 
points leads to the singularity in the density of states. 
Near the singularity, we consider a two-dimensional 
electronic spectrum given by [32-34] 

(k) =
F
(1 ) +

2

2m
k
x
k
y

         (1) 

where 
 F

 is the Fermi energy and  m  is the effective 

mass of carriers in CuO2 plane. The electronic 
spectrum described by Eq. (1) gives logarithmic 

singularities in the density of states at 
VHS

=
F
(1 ) . 

The parameter  allows us to control the position of 

the VHS with respect to the Fermi level, i.e 

 
= (

F VHS
) /

F
. The electronic spectrum given by 

Eq. (1) has been shown to be in a good agreement with 
angle-resolved photoemission spectra experiments in 
high-

 
T

c
 superconductors and can explain main 

electronic properties of these new compounds [35]. 
From this equation, we have 

  

k
y
=

2m
2

F
(1 )

k
x

.         (2) 

When ky = kx, we have 

  

k
y
= k

x
=

2m
2 F

(1 ) .         (3) 

We calculate the number of states between k = 0 

and 
 k

=  (see Figure 1) 

 

Figure 1: Calculation of the area between the curves 0 and 

 (1/8 of Brillouin zone). The curve 
 k

=  is the hyperbole 

given by Eq. (3). 
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N ( ) = 8
a
2

2( )
2

1

2

2m
2 F

(1 ) +
2m
2 F

(1 )
dk
x

k
x

2m*

2 F
(1 )

a

2

2

             (4)  

After calculation, we obtain 

N ( ) =
a
2

2

2m
2 F

(1 ) . 1+ ln
2 2

4a2 2m
F
(1 )

.             (5) 

After differentiation of this equation, with respect to 
the energy , we obtain the expression of the density of 
states near the singularity. 

   

n
s
( ) =

dN ( )

d
=

2m a
2

2 2
ln

2 2

4m a
2

F
(1 )

.       (6) 

Near the band edge, the energy 
 

(k)  has the form 

  

(k) =
2k2

2m
           (7) 

and the density of states is constant in two-dimensional 
square lattice 

n
0
=
m a

2

2
2

.           (8) 

The final density of states 
 
n( )  takes the form 

   

n( ) = n
s
( ) + n

0
=

2m a
2

2 2
ln

2 2

4m
*
a

2

F
(1 )

+
m a

2

2 2

 (9) 

In the tight-binding model, the energy dispersion is 

given by 
   

k( ) = 2t cos k
x
a + cos k

y
a( )  where t is 

transfer integral. The Fermi surface is a perfect square 
and near the singularity, the density of states is 

 
n ( ) = 1 / 2D( ) ln D( )  where  D =

2
t [36]. Near the 

band edge the two-dimensional electronic spectrum is 

developed as 
   

k( ) = t k
x
a( )

2

+ k
y
a( )

2

 which leads to 

a constant density of states 
 
n

0
= 1 4 t . Another work 

[37] shows that the density of states n( )  derived from 

a tight-binding model on a two dimensional square 
lattice contain a logarithmic term plus a constant one 

 
n( ) = n

1
ln D( ) + n

0
, where 

 
n

1
= 1 / 2

2
t , tD 4=  

and n
0
= 1 / 2

2
t( ) ln 4 . If we take into account, the 

second neighbor interaction t’, the singularity is 
displaced towards lower energy and it occurs for 

 = 4t ' . In this work, the authors have shown that the 
additional constant term in 

 
n( )  enhances the isotope 

coefficient . We can write the general density of 
states as the form 

n( ) = n1 ln
D

F
(1 )

+ n
0

       (10) 

where 
 
n

1
= 1 / 2D  and 

   D =
2 2

/ 4m a
2 . For 

 
= 0 , the 

Fermi level coincides with the singularity. When the 
parameter  increases from 0 to 0.9, the singularity is 

shifted to lower energy. With this form of the density of 
states ( = 0 ), we have established analytical 

expressions of the superconducting gap ratio R [38], 

the critical temperature 
 
T

c
 and the isotope coefficient 

[39, 40]. These expressions do not provide any 
upper limit. These equations are applicable to low as 
well as high temperature superconductors. 

For a half-filling system, the Fermi level is just on 

the singularity 
F
=

VHS
. We know for half filling the 

high-
 
T

c
 superconductors are antiferromagnetic 

insulators. The Fermi level is at the VHS for a doping 
level corresponding to 20 % of holes in each CuO2 
plane or 40 % filling of the Brillouin zone (BZ) [41]. This 
can be achieved by taking into account the interaction 
between second nearest neighbors and the effect of 
the orthorhombic distortion [42]. The introduction of this 
orthorhombic distortion increases the value of the 
superconducting gap ratio  R , and with decreasing 
second neighbor hopping, R  decreases [43]. The 
variation of  R  suggests that the Fermi level is shifted 
from the singularity. We shall mention that this model 
for the density of states of a two-dimensional system is 
unstable at half-filling in view of nesting effect [44]. We 
believe that instability is due to the magnetic excitations 
or thermodynamic fluctuations. The role of the 

singularity in the mechanism of high-
 
T

c
 

superconductivity and the stability of the system are not 
yet established but we want to stress that this model 
has already explained a certain number of 

experimental facts, i.e high 
 
T

c
 [14, 29, 39, 40, 45], 

small isotope effect [37, 39, 40, 45], linear resistivity 
and thermo power [33], and thermal conductivity [34]. 
We focus on the role of the van Hove singularity that 
will be present in stable situations. 

3. EXPRESSION OF THE FERMI VELOCITY 

The width of singularity has been chosen equal to 

the Fermi energy D = F [14, 17, 18, 20, 45]. From Eq. 
9, we have. 
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F
= D =

2 2

4m a
2 .        (11) 

The Fermi velocity is calculated from the simple 
expression 

F
=
1

2
m v

F

2
.         (12) 

From these two expressions, we have the simple 

form of the Fermi velocity 
F
v  

   

v
F
=

2m a .         (13) 

The Fermi velocity decreases with the effective 

mass  m . From Eq. 13, the Fermi velocity 
 
v

F
 is in the 

range (1.072 – 3.218)107 cm.s-1 when  m  is between 
2m0 and 6m0 (m0 is the free electron mass). The small 
value of v

F
 leads to small value of coherence length. 

For lanthanum compounds La2-xSrxCuO4, 
 0

 is 

estimated between 20  and 40 . With experimental 
values of the superconducting gap ratio  R  and the 

superconducting transition temperature 
 
T

c
 and BCS 

formula of the coherence length 
0

, we obtain the 

Fermi velocity 
F
v  in the range (1 – 1.859) 107 cm.s-1. 

With Eq. (13), we obtain the same values when the 

effective mass  m  is large. The Fermi velocity varies 
from zero to its maximum given by Eq (13).  

The average of the Fermi velocity 
 
< v

F
>  and the 

coherence length 
0

 deduced from < v
F
>  are studied 

in details in a previous work [46]. In the following 
section, we calculate the coherence length from the 
expression giving the maximum of the Fermi velocity. 

4. EXPRESSION OF THE COHERENCE LENGTH 

In the BCS theory, the coherence length is given by 
[47] 

         (14) 

Introducing Eqs. (11) and (13) in Eq. (14), we obtain 

the following expression of 
 0

 

  
0
=

2
2

2D

(0)
a

         (15) 

This formula shows that the coherence length 

depends on the ratio (0) / D = (0) /
F

. The 

coherence length decreases when the ratio 
  

(0) / D  

increases. This ratio estimates what fraction of the 
carriers which are directly involved in the pairing. A 
large gap energy and small value of the width of 

singularity (
 
D =

F
) contribute to the large value of this 

ratio. The coherence length decreases from 36 Å to 9 Å 

when the parameter (0) /
F

 varies from 0.03 to 0.12. 

In conventional superconductors this ratio is very small 

( (0) /
F

10 4 ). The possibility of having a large 

value of (0) /
F

 and short coherence length is related 

to the quasi-2D structure of the high- T
c

 

superconductors [48, 49]. The large value of this 
parameter describes other properties such a scale of 
the critical region near T

c
. In addition, we mention that 

the parameter (0) /
F( )
2

 describes the shift in the 

dielectric function due to superconducting transition. 
This shift is negligibly small in conventional 

superconductors, but it is noticeable in high- T
c

 oxide 

superconductors [49]. 

To calculate this parameter, we start with the BCS 
expression giving the gap )(T  at temperature T  

 (16) 

At T = 0, the interaction is uniquely related to the 

phonon 
 
V

p
 which is constant in the range 

   
2

D
 

centered about the Fermi level 
F

 and the Eq. (16) is 

written as 

1=
1

2

V
p

k '
2
+

2 (0)

.

k '

        (17) 

After replacing the sum by integral, we have 

      (18) 

Introducing Eq. (10) in Eq. (18), we obtain 

           (19)  

Analytical calculation gives the following expression 
of the gap energy [29] 
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   (20) 

where b = 2
/ 6 = 1.6449 . When there is no singularity 

n1 = 0 and D =
D

, we have the BCS formula: 

. When n0 = 0 and 

 
D =

F
= k

B
T

F
 where 

 
T

F
 is the Fermi temperature, we 

obtain the expression derived by Getino et al: 

  

(0) = 2k
B
T

F
exp 2 / n

1
V

p( ) + ln T
F

/
D( )( )

2
1.64

1/ 2

 [14]. 

Equation (20) is applicable to low as well as high 
temperature superconductors. Numerical calculation 
shows that the gap energy 

 
(0)  increases when the 

effective mass increases. When the effective mass 

varies from  m  = 2m0 to  m  = 6m0, the gap energy 
increases from 4.763 meV to 17.874 meV for 

   D
= 0.025 eV, and from 9.546 meV to 39.80 meV for 

   D
= 0.085 eV. When the effective mass increases, 

the Fermi velocity vF decreases while the gap energy 
increases. From this expression, we obtain for the 
parameter 

  
(0) / D = (0) /

F
, the following expression 

   (21) 

In the weak coupling limit and the Debye energy 

D
 is in the range 0.035 – 0.075 eV, the ratio 

  
(0) /

F
 is in the range  0.01 0.3 0. In conventional 

superconductors, this ratio is very small 

(
  

(0) /
F

10 4 ).  

Introducing Eq. (21) in Eq. (15), we obtain the 
following expression of the coherence length 

     (22) 

The coherence length depends on the ratio 
  
n

0
/ n

1
, 

on the phonon-interaction 
 
V

p
, on the width of 

singularity D and on the Debye energy 
  D

. This 

expression shows that the ratio n
0
/ n
1
 contributes to 

the decrease in coherence length 
 0

.  

Figures (2) and (3) show that the coherence length 

 0
 decreases, when the effective mass m  increases. 

When m  increases from 3m0 to 6m0 and 
 
V

p
 is in the 

range 0.10 – 0.14 eV, the coherence length 
0

 

decreases from 20  to 8  (Figure 3). When m  
varies from 3m0 to 6m0 and when the Debye energy is 

in the range 0.035 – 0.085 eV, the ratio 
  0

/ a  

decreases from 7 to 2 (Figure 3). In this case, the 
coherence length 

0
 decreases from 28  to 8 .  

 

Figure 2: Variation of the coherence length 
0

 with the 

effective mass  m  of carriers for different values of the 

phonon interaction 
 
V

p
 ( n

0
/ n
1
= / 4  and 

D
=0.065 eV). 

 

Figure 3: Variation of the coherence length 
 0

 with the 

effective mass of carriers  m  for different values of the Debye 

energy (
  
n

0
/ n

1
= / 4 and 

 
V

p
 = 0.14 eV).  

In Figure 4, we plot the ratio 
  0

/ a  versus the 

phonon interaction 
 
V

p
 for different values of the Debye 

energy with effective mass m  = 2m0. This figure 
shows that the coherence length decreases with the 

a 
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phonon-interaction 
 
V

p
. When this interaction varies 

from 0.16 eV to 0.5 eV and when the Debye energy is 

in the range 0.035 – 0.085 eV, the ratio 
  0

/ a  

decreases from 13.5 to 2. In this case, the coherence 

length 
0

 decreases from 54  to 8 . We can see that 

the short coherence length in high- T
c

 oxide 

superconductors is mainly due to the large effective 

mass  m . We can see also, even increase in 
 
V

p
 

contributes to the decrease in 
 0

. 

 

Figure 4: Variation of the coherence length 
 0

 with the 

phonon interaction 
 
V

p
 for different values of the Debye 

energy ( n
0
/ n
1
= / 4 and 

  
m = 2m

0
). 

In Table 2, we calculate the coupling constant 

  p
= n

1
V

p
 and the gap energy 

 
(0)  from experimental 

results of the coherence length 
 0

 by using Eqs. (20) 

and (22). For yttrium compound YBa2Cu3O6+x, when 

the Debye energy 
  D

 is in the range 0.035 – 0.075 

eV, we find the coupling constant 
p

 between 0.09 

and 0.17 and the gap energy 
 

(0)  = 33.80 meV. The 

experimental results show that the maximum gap is 
between 23 meV and 40.5 meV [8, 50, 51]. For bismuth 
compounds, when the Debye energy is the range 0.055 

– 0.075 eV, we find the constant coupling 
 p

 between 

0.19 and 0.25 and 
 

(0)  = 38.77 meV, 
 

(0)  = 35.99 

meV for Bi-2212 and Bi-2223, respectively. These 
results are in a good agreement with experimental 
results which show that the maximum gap is between 
29 meV and 45 meV for Bi-2212 compound [9 - 11] and 
between 38 meV and 53 meV for Bi-2223 compound 
[9, 12]. 

In Table 3, we calculate the coupling constant 
 p

 

and the coherence length 
 0

 from the experimental 

results of the gap energy (0) . For lanthanum 

compound La2-xSrxCuO4+x, when the Debye energy is 

in the range 0.045 – 0.075 eV, we find 
 p

 between 

0.06 and 0.08 and the coherence 
 0

 = 31 . When the 

Debye energy 
D

 is in the range 0.065 – 0.085 eV, 

we find the coupling constant 
 p

 between 0.214 and 

0.245 and the coherence length 
 0

 = 10  for thallium 

compound Tl2Ba2CuO6+x. In this case, we find the 
coupling constant in the range 0.17 – 0.25 and the 

coherence lengths 
0

 = 14  and 
0

 = 10.68  for the 

mercury compound HgBa2CuO4+x (Hg-1201, Tc = 96 – 
97 K). These values of the coherence length 
correspond to the experimental values of the gap 
energy 

 
(0)  = 33 meV [13] and 

 
(0)  = 44 meV [8] 

respectively. For the mercury compound Hg-1212, we 
obtain the coupling constant in the range 0.24 – 0.28 

and the coherence length 
 0

 = 9.50  corresponding to 

the experimental value of the gap energy 
 

(0)  = 55 

meV [13]. 

When the coupling constant is in the range 0.06 – 
0.30 and the Debye energy in the range 0.025 – 0.085 
eV, we obtain simultaneously the experimental values 
of the gap energy 

 
(0) and the coherence length 

 0
. In 

the following section, we take into account the 

Coulomb repulsion 
 
V

C
 and study its effect on the 

coherence length. 

5. EFFECT OF THE COULOMB REPULSION 

The Coulomb repulsionV
C

 plays a fundamental role 

in superconductivity. This interaction has a strong 
effect on the gap energy 

 
(0)  but does not suppress 

the superconductivity. The Coulomb interaction 
reduces the gap energy 

 
(0)  which leads to the 

increase in coherence length 
 0

. The expression of the 

gap energy deduced from Force-Bok formula through 
the relation 

  
2 (0) = Rk

B
T

c
, is given by [52] 

  

(0) = R
D

2
exp

n
0

n
1

+ 0.819 F       (23) 

where 

F =
2

n
1
V
p
n
1
V
C

*
+

n
0

n
1

+ 0.819

2

+ ln
D

D

2

2 0.99 2
n
0

n
1

ln
2.28

D

D

1

2

           (24) 

and 
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V
C

*
=

V
c

1+ μ
1

2
ln

D

D

2

+
n

0

n
1

ln
D

D

      (25) 

where μ = n
1
V
C

. With RBCS = 3.53, we can write the 

expression of the gap energy as the form 

           (26) 

where c = 1.32. We remark that this expression is 

obtained by replacing 
  p

= n
1
V

p
 by 

  p
μ = n

1
V

p
n

1
V

C

*  in our expression (Eq. 20).  

The expression of the coherence length is written as 

   

0
=

a 2

2e
n

0
n

1

exp
2

p
μ

+
n

0

n
1

+ ln
D

D

2

b

1

2

     (27)  

where 
  
μ = n

1
V

C

* . We have made some numerical 

calculation using Eqs. (26) and (27) with D = 0.3225 

eV, 
   D

= 0.065 eV and 
  
n

1
/ n

0
= / 4 . 

Figure (5) shows that, the gap energy 

 
(0) decreases with the parameter μ . For example, 

when the parameter μ  varies from 0.08 to 0.3, the gap 

energy (0)  decreases from 36.25 meV to 12.61 meV 

for 
 p

 = 0.28, and from 44.59 meV to 21.79 meV for 

Table 2: Theoretical Values of the Coupling Constant 
  p

= n
1
V

p
 and the Gap Energy

 
(0)  Obtained from Experimental 

Values of the Coherences Length 
0

 of YBa2Cu3O6+x and Tl-2223 (D = 0.5 eV, n
0
/ n
1
= 4 ) and of Bismuth 

Compounds (D = 0.3225 eV, 
  
n

0
/ n

1
= ). 

Compouds 
 exp

 ( ) 
  p

= n
1
V

p
 

Eq. 22 
  D

(eV) 
 the

 (meV) 

 Eq. 20  
 exp

(meV) 

YBa2Cu3O6+x 

 
T

c
 = 89 (K) 

16 

Refs. 1 and 2 

0.16886 

0.11315 

0.093393 

0.035 

0.055 

0.075 
33.80 23 – 40 Refs. 8 and 48 

Tl-2223 

 
T

c
 = 125 K 

13.6  
Ref. 3 

0.211111 

0.130811 

0.10495 

0.035 

0.055 

0.075 

39.789  

Bi-2223 

T
c

 = 110 K 
9.7  

Ref. 4 

0.232613 

0.212352 

0.198258 

0.055 

0.065 

0.075 

35.99 
43 ± 5  
Ref. 10 

Bi-2212 

T
c

 = 92 K 

9 ± 1 

Ref. 4 

0.248468 

0.225345 

0.209709 

0.055 

0.065 

0.075 

38.77 
36 ± 2 

Ref. 9 

 

Figure 5: Variation of the gap energy 
 

(0)  with the 

parameter 
  
μ = n

1
V

p
 for different values of the coupling 

constant 
p

 (D = 0.3225 eV, n
0
/ n
1
= / 4  and 

D
=0.065 

eV). 
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p
 = 0.32. On the other hand, the ratio 

  0
/ a  

increases with the parameter μ . When this parameter 

μ  varies from 0.08 to 0.3, the ratio 
  0

/ a  increases 

from 2.55 to 7.33 for 
 p

 = 0.28, and from 2 to 4.24 for 

p
 = 0.32. In this case, the coherence length 

 0
 

increases from 8  to 29.32  (Figure 6). 

If we choose 
 
n

1
 = 0.1 states/eV, the Coulomb 

repulsion 
 
V

C
 is in tne range 0.8 – 3 eV. The gap 

energy increases with the phonon-interaction 
 
V

p
 and 

decreases with the Coulomb repulsion 
 
V

C
 while the 

coherence length decreases with 
 
V

p
 and increases 

with 
 
V

C
. With these values of the phonon-interaction 

 
V

p
 and electron-electron interaction 

 
V

C
, we obtain 

simultaneously the experimental values of the gap 
energy and the coherence length. 

6. CONCLUSION 

In this approach, we have presented a formula of 
the density of states. The more realistic model contains 

a logarithmic term 
  
(1 2D) ln(D / )  plus a constant one 

  
n

0
. This form of the density of states has been also 

obtained from tight-binding model [37]. From this form 
of the density of states, we have calculated the Fermi 

velocity 
F
v  and the gap energy 

 
(0) . With the 

expressions of 
F
v  and

 
(0) , we have deduced a 

formula of the coherence length 
 0

 by using the BCS 

theory. In this formula, the coherence length decreases 

with the phonon-interaction 
 
V

p
 and the effective mass 

of carriers  m . Within the BCS theory, the singular 
logarithmic density of states can explain simultaneously 
the large gap energy and the short coherence length. 
In order to have the experimental values of the gap 

energy 
 

(0)  and the coherence length 
 0

, the 

constant coupling 
 p

 is in the range 0.06 – 0.30 and 

the effective mass tends to be large (2m0 – 6m0). Our 

numerical calculation shows that the Fermi velocity 
 
v

F
 

is in the range (1 – 2). 107cm.s-1. The electron-phonon 

interaction 
 
V

p
 plays a fundamental role in high-

 
T

c
 

superconductors as well as the classical 
superconductors. In the weak coupling, our theoretical 
values of the coherence length are in a good 

Table 3: Theoretical Values of the Coupling Constant 
  p

= n
1
V

p
 and the Coherence Length 

0
 Obtained from 

Experimental Values of the Gap Energy of La2-xSrxCuO4 (D = 0.5 eV, n
0
/ n
1
= 4  n

0
/ n
1
= 4 ), for Thallium 

Compound Tl-2201 and Mercury Compounds Hg-1201, Hg-1212 (D = 0.3225 eV, 
  
n

0
/ n

1
= 4 ). 

Compounds  
 0

 ( ) 

Eq. 22 

  p
= n

1
V

p
  

Eq. 20 

  D
(eV) 

 exp
0( )  (meV) 

La2-xSrxCuO4 

 
T

c
 = 38 - 39 K 

31.11 

31.05 

31.00 

0.0835 

0.0669 

0.0606 

0.045 

0.065 

0.085 

17.5 Ref. 6 

Tl2Ba2CuO6+x 

(Tl-2201) 
 
T

c  = 92.5 K 

11.10 

10.91 

10.76 

0.2456 

0.2273 

0.2138 

0.065 

0.075 

0.085 

43 Ref. 9 

HgBa2CuO4+x 

(Hg-1201) T
c

 = 96 - 97 K 

14.18 

13.95 

13.76 

0.1988 

0.1865 

0.1775 

0.065 

0.075 

0.085 

33 Ref. 11 

HgBa2CuO4+x 

(Hg-1201) T
c

 = 96 - 97 K 

10.88 

10.68 

10.52 

0.2504 

0.2315 

0.2177 

0.065 

0.075 

0.085 

44±4 Ref. 9 

HgBa2CaCu2O6+x 

(Hg-1212) T
c  = 123 K 

9.67 

9.51 

9.36 

0.2814 

0.2573 

0.2405 

0.065 

0.075 

0.085 

50 Ref. 11 
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agreement with experimental results, a much better 
agreement could have obtained by fitting the model 
parameters. 

We mention that the superconducting gap ratio both 
in d-wave pairing and in strong coupling, is still smaller 
than experimental results, but it is interesting to 
develop this work in d-wave pair function and in strong 
coupling and compare with our results. 
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