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Abstract: Unfortunately, sequencing technology can only access the genome sequence as massive numbers of short 
strings are called reads. The genome assembly process constructs the complete genome from these reads based on 
the overlapping between the reads, called the de novo approach, or aligns the reads based on their positions in the 
available reference genome, called the reference-guided approach. Millions of reads search for overlapping or 
alignment, a well-known data structure problem called all-against-all. Many studies have proposed indexing such as 
hash index, prefix tree index, and parallelization technique to optimize the overlapping or the read alignment 
individually. However, due to the massive data amount and the repeats, limitations still affect the index efficiency, 
requiring more enhancements. This article introduces a new hybrid index named Prefix Tree Hash Partitioned 
index(PTHP), which combines prefix-tree index, hash index, pigeonhole concept, and parallelization. PTHP index 
reveals significant results on the simulation and real dataset, reducing the computational time complexity of overlapping 
and read alignment, thus the assembly time outperforming prefix tree index and hash index. Improving the performance 
of overlapping and read alignment using the PTHP index reveals great results in optimizing the hybrid genome 
assembly that combines both. 

Keywords: Data structures; Genome assembly; Genome indexing; Genome assembly overlapping; Genome 

assembly read alignment; Genome assembly performance; Genome prefix tree index; Genome hash index 

 

1. INTRODUCTION 

The genome is an organism's completed Deoxyribonucleic acid (DNA ) sequences [1]. Biologists are interested in 

knowing this chain to understand the behaviour of genetic diseases [2]. However, the current sequencing technology 

cannot report the complete DNA sequence, instead of massive numbers of short strings called reads [3]. The genome 

is sequenced accurately. Each region is sequenced many times, often called coverage, often expressed as 1x, 2x, 

3x, and so on [4]. This high coverage makes genome data huge data. For example, the human genome consists of 

approximately three billion letters with sequencing coverage 60X sequence will have a total genome size of 180 billion 

letters [5]. Reads must be concatenated together to represent the whole genome, called genome assembly. In 
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computer science, two main approaches are used to construct the sequenced genome from reads, the reference-

guided approach and the de novo approach. Reference-guided is used when a known reference genome instance 

drives the assembly by mapping the reads to their offsets in the reference genome, called the read alignment process 

[6]. On the other hand, the de novo approach constructs the genome without the aid of any reference genome 

concatenating the reads based on the exact match between their suffix and prefix, called overlapping. Read alignment 

in reference guided approach works in computational time complexity O(NL) while (N) is the number of the reads, 

which may be millions, to be aligned to each offset of reference genome with length (L), which may be billions of 

letters, which is a highly time-intensive process. In de novo, the computational time complexity of overlapping works 

in time complexity O(N)2, where (N) is the number of reads (millions). Millions against millions for overlapping or 

against billions of offsets for alignment is a data structure problem called all-against-all, which is the bottleneck of 

genome assembly[7], [8], [9]. 

The index helps to speed up the search time, reducing the number of iterations (computational time complexity), and 

making the algorithm only focus on a specific part of the data instead of all. Mer is a Latin word that means part of the 

string, while k is the length of this part, k-mer index is one of the eldest strings indexing methods [10]. The Hash index 

is the most famous implementation of the k-mer index. Hash index is a widely used index in the genome area to 

reduce suffix-prefix computational time complexity in de novo overlapping. However, the repetitive sequences in the 

genome might make two keys generate an identical hash and then both of them point to the same bucket, known as 

hash collisions that slow down the search in the hash index [11]. On the other hand, the suffix tree (S.T.) (also called 

prefix tree) is the most popular and widely used indexing tool in genomics [12]. It is a robust index to solve complex 

problems. It is the base of popular sequence alignment tools, such as MUMmer and RePuter. Unfortunately, due to 

the massive amount of genome data, the construction of ST is highly memory and CPU-consuming [13]. 

Parallelism techniques applied to genome data solved many performance challenges to reduce the total processing 

time. Parallelization splits the extensive process into smaller ones running them simultaneously in parallel [14][15]. 

Also, using high-performance computing such as Apache Spark helped to speed up the genome assembly of [16],[17]. 

However, parallelization is introduced in genome assembly only in some stages individually. 

A hybrid genome assembly approach combines de novo overlapping and reference-guided read alignment to get 

higher accuracy in assembling the genomes. Despite the success of indexing and parallelization to optimize the 

overlapping and read alignment individually, the performance optimization of the hybrid assembly approach remains 

a challenge. Also, the usage of parallelization in the hybrid assembly approach is yet to be fully implemented [17]. 

2. RELATED WORK 

A study that must be considered is that the keys of k-mer index can be extracted as a shape instead of extracting the 

full length of the k-mers. This way helped to reduce the total index size and increase the index hitting specificity. The 

idea implemented to develop Homopolymer Compressed k-mers method proposed by [18], significantly enhances 

read alignment against the reference genome. Also, the same idea was used by [19]And enhanced to develop a 

mapping-friendly sequence reductions method by [20]. 

A novel hash index introduced by [21] applied to the human genome using the combination of seed 

selection(pigeonhole concept) and efficient parallel construction with hash index, which was implemented to design 

the Fast and Efficient read Mapper mapper (FEM). The results of FEM outperform other state-of-the-art mappers in 

terms of both speed and memory footprint. 

On the other hand, many studies work on reducing the construction time of ST. The study proposed by [22] took 

advantage of the pigeonhole principle (P.P.), called the seed and extends principle. It separates the read into non-

overlapping partitions and then checks the matching between the partitions instead of matching letter by letter. Then, 

the verification step must be done if there is a match between the partitions, escaping many unnecessary iterations. 

The combination of prefix tree index and PP on the Escherichia coli genome shows significant results performing the 

overlapping in 49 seconds, while the prefix tree alone is 757 seconds. However, it is applied only for overlapping in 

de novo only. 

The most widely used software for read alignment is BWA-MEM and the recently published faster version BWA-

MEM2. Enumerated Radix Tree (ERT) is a study proposed by [23] combined prefix tree with the PP solution resulting 
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in a 2.1X improvement in overall read alignment throughput over BWA-MEM2. However, it is applied only for read 

alignment in the reference-guided approach. 

Sequencing technologies produce a massive number of short reads. The first step of genome assembly is to extract 

the reads from FASTA or FASTQ files into structured database tables, index the reads, and finally, overlap or read 

alignment. Parallel computing solved many performance challenges by splitting the extensive process into smaller 

sub-processes and running them in parallel [24][25]. One of the most incredible ideas to reduce index construction 

time is to split big genome files into smaller files processed in parallel, introduced in the high-performance k-mer 

indexing method (Kmerind) by [26]. Kmerind supports the parallel reading of genome reads' files through file 

partitioning as a part of this algorithm. More enhancement was introduced by the combination of splitting genome files 

and the usage of high-scaling platforms, which is the GraphSeq study proposed by [27]. GraphSeq splits a big genome 

file into several small files loading all of the reads in parallel. It runs on a spark platform achieving 13X, speeding up 

for de novo genome assembly faster than the traditional platform. A recent similar study was introduced by [28]. The 

IBD algorithm addressed pairwise comparison problems that can be used to overlap two reads or align reads against 

k-mer of the reference genome [29]. It breaks a significant problem (N2) into smaller ones using massive parallelization 

with each (N) comparison. It is applied to the UK Biobank dataset, with a 250X faster time over the standard approach 

of pairwise alignment. 

Hybridization appears in genome assembly in different ways. It can combine data from different platforms to enhance 

the accuracy of the genome assembly [30]. Also can be done through a combination of de novo and reference-guided 

approaches introducing the hybrid assembly approach and bypassing the limitations of both approaches. An example 

of this hybridization is DACCOR, which is a hybrid genome assembly proposed by [31]. DACCOR applied to assemble 

the bacterial genome Treponema pallidum reveals higher assembly accuracy. However, the hybrid assembly 

approach comes with significant performance challenges. The total assembly time in the hybrid approach is 

challenging for any traditional algorithm or hardware architecture. Although the performance challenge is optimized 

in each approach, no indexing yet been introduced to fit overlapping and reads alignment in the hybrid assembly 

approach. 

Regardless of the success of data structure indexing and parallelization in optimizing overlapping or reads alignment, 

there are few methods to optimize both overlapping and read alignment. This limitation might challenge the 

performance of hybrid assemblies that combine overlapping and reads alignment. 

3. METHOD 

A. Index Construction 

Prefix Tree Hash Partitioned index (PTHP) combines the benefits of a few data structure concepts, introducing an 

enterprise index to optimize all assembly stages. It combines prefix tree and hash indexing to optimize the overlapping 

process. On the other hand, reads are stored at the index as non-overlapped partitions (pigeonhole concept) to 

optimize the reads alignment process. The construction combines two parallelization concepts, splitting the big 

genome file into smaller files loading them in parallel, and constructing the index across multiple nodes in parallel. In 

this study, the prefix tree index is constructed across four nodes named according to genome letters A, C, G, and T. 

Six-teen leaves tables are constructed in each Node and named as two genome letters. Genome letters are only four 

letters. Thus the probabilities of combining two letters generate an array with a length of sixteen. This construction 

with a fixed number of leaves benefits the low consumption of CPU. However, there are massive iterations in 

overlapping reads or aligning them against the reference genome. Therefore, a hash index is constructed in each leaf 

table with a fixed 64 hash groups, each named as three genome letters. The probabilities of combining three letters 

generate an array of length sixty-four. The PTHP index is constructed in four stages. 

In the first stage of the PTHP index construction, the function FilesInitializer is called to create an array of partitioned 

FASTA files. Let N[] is the array of four physical nodes (N=[A, C, G, T]) and T[] be the array of sixteen leaves tables 

in each Node (T=[A.A., A.C., CA, CC, C.G.,.., ti]) thus the partition files array F[] can be constructed by the 

multiplication of N[] and T[] with sixty-four elements (F=[AAA, AAC, AAG,….CCA,…, fi]). The output of this stage is 

sixty-four Empty FASTA files named as the elements of array F[]. 
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The second stage of the PTHP construction is to call the FileSpliter function to stream reads from the main genome 

FASTA file or the array of genome files into the sixty-four partitioned files, the previous stage's output. Each read is 

streamed based on its first three letters into the corresponding partitioned file named these letters. All the reads 

containing (N) letters are filtered out during this stage to ensure data quality. For instance, reads that start with "ACG" 

will be written into the partition file "ACG". During this stage, the maximum read length maxL is detected and outputted. 

The below pseudocode is for FileSpliter function. 

 

In the third stage of PTHP construction, The Mapper function maps each partition file to load its data into the 

corresponding Table in the corresponding Node and also maps the load to work in the dedicated CPU core. For 

instance, file "ATT" loads its data into node "A" leaf table "T.T." running on CPU core number 1. Then each read is 

split into no-overlapped partitions through the Partitioner function, which is nested called through the execution of the 

Mapper function. The number of partitions (P.N.) is calculated based on the partition length (P.L.) as input petameter 

and maxL. The pseudocode of the Partitioner function as below. 
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Finally, in the fourth stage,  the Loader function is called to physically insert indexed partitioned reads into their 

corresponding Table. The loader function extracts the node key (NK), table key (Leaf key) (TK), and hash key (HK). 

The loader function also adds a unique identity number for each read RID, which is unique across all tables and 

nodes. The loader function runs in each Node for each Table in parallel, adding significant speed to PTHP index 

construction. The final output of the Loader function is sixteen tables in each node store indexed partitioned reads as 

the below pseudocode. Alao, The below example in Figure (1) shows how to index two reads (r1) and (r2). Both reads 

start with the letter (A), which means they are indexed under Node (A). The second and third letters are (TT), which 

means that both reads are under the leaf table (T.T.) in Node (A). Each read in this leaf is indexed under its 

corresponding hash group based on the reader's fourth, fifth, and sixth letters, which match the exact hash group 

name. In the below example, the fourth, fifth, and sixth letters of r1 are (AAA), which means that r1 is indexed under 

the hash group (AAA) while r2 is under the hash group (AGC). 
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Figure 1. Example of indexing two reads using PTHP index 25 

A TT ØAAA AAAG CTTA CCGC CACCCA 

A TT ØAGC AGCT TAAC GGTG TCACGG 

Two reads r1, r2 to be indexed 

r1={ATTAAAGCTTACCGCCACCCA}  

r2={ATTAGCTTAACGGTGTCACGG} 

 

Hash Index 

Prefix Tree Index 

Hash Index 

Prefix Tree Index 

Reads as partitions the table 

64 Hash 

groups 

In Table TT 

A C G T AA 

TT 

AC 

16 Leaf 

Tables 

4 Nodes 
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The final output PTHP construction is sixteen tables in each Node (four nodes) storing indexed partitioned reads at 

their hash groups, as shown in Figure (2). 

 

 

The reference genome file is indexed similarly to reads indexing after overlapping processes with only two differences. 

First, the indexed k-mers of a reference genome for each Node are stored in one Table in that Node instead of the 

sixteen tables. For example, all k-mers of the reference genome that started with the letter (A) are stored in one Table 

in Node (A). The second difference is that the Loader function does not add RID for the k-mers. Instead, they are 

uniquely identified by their original offsets (their positions in the reference genome), which are detected during the file 

splitter stage of the reference genome, as shown in figure(3). The length of k-mer is calculated based on the average 

of  maxL before overlapping and after overlapping to ensure the minimal difference between  k-mer length and contig 

length after overlapping. 

 

B. QUERYING PTHP INDEX 

The overlapping process is implemented in three main steps. The first step is to load all indexed suffixes into the 

suffix table in the master node, and then all indexed prefix reads are loaded into the prefix table. The second step is 

to concatenate matched suf-fix-prefix reads, loading concatenated reads (contigs) into an overlapping table in the 

master node. Finally, it overwrites suffix reads with corresponding overlapped ones (contigs) and then deletes prefix 

reads from the dataset. Searching in the hash groups follows binary search, significantly reducing the computational 

time complexity of over-lapping. The below example in Figure (4) shows a suffix read (r1) searching for overlap-ping 

in the prefix table. 
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Figure 2. Example of indeed read 10 
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Figure 3. Example of indexed k-mer of the reference genome 11 
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Figure 4. Queqying PTHP index for overlapping 10 

N.K L.K H.K Prefix RID 

T GA ACC ….. 5 

G GT ACT ….. 8 

T GA CCG 

 

…… 77 

T GG ……. …. 

T GG TAC GTAAGCTAT 18 

T GG TGGTACATATTAA 22 

A CT A2A CG3C 16 

Node key 

Table Key 

Hash Group 

Suffix Read r1:TGGTACATATTAA 

Suffix Table  

Prefix Table 

Binary search 
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PTHP index stores indexed reads as non-overlapped partitions, and this implementation is to optimize the read 

alignment process. As shown in Figure (5), If the read (r) hits the k-mer index as a first check, then the partition match 

is performed. The partition matching is performed as a pattern match instead of the full partition match according to 

the idea of [19][20]. If the index key is matched and all partitions have a pattern match with the corresponding k-mer 

partitions, then a full checking match is performed by calling the similarity function. Otherwise, this contig is a 

mismatch that k-mer and checking the next contig skipping similarity check for this contig. PTHP index is implemented 

to store all indexed reference genome's k-mers in each Node in one Table, which means that all reads in each Table 

in each node search for alignment in the k-mers Table stored in the same Node. Reads alignment runs in all nodes 

in parallel at the same time, reducing the total alignment time. 

 

Read alignment is implemented in two main steps. The first step is to call the Aligner function to perform the previously 

mentioned checking index hit and partition pattern match between the read and the expected matched k-mers of the 

reference genome. If the checking is true, the similarity is called, as shown in the pseudocode below, for the aligner 

function. We assume in the below example that the similarity threshold of allowed edits (mismatch) is 10%. 

 

Mapping reads to the reference genome is not necessarily have an exact match due to individual variations. The 

approximate match parameter, which sets the number of allowed edits in this research, is a dynamic parameter that 

depends on the used reference genome. For example, the number of edits can be 10% of the contig length when 

using the reference genome of the same species. In this case, a close species reference genome is used a higher 

number of allowed edits is used. The pseudocode below explains the verification step through the similarity function, 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Figure 5. Partition pattern match 9 
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which accepts the contig and the k-mer re-turning the similarity as a percentage and stopping when the threshold of 

allowed edits is reached. 

 

4. RESULTS AND DISCUSSION 

Fundamentally, the efficiency of the index is evaluated by its impaction in reducing the number of iterations (time 

complexity). The time complexity directly reflects the total process time, such as overlapping or reads alignment. 

However, (GC) content is the percentage of two letters, G and C, in the genome. It is a high portion in some genomes, 

comprising more than 50% (CG). This portion of (CG) [5],[9]repeat negatively affects the efficiency of some indexing 

methods, especially prefix-tree index, because many reads might start with (CG) or (GC), and they are under the 

same root, which affects the data distribution across the Node of the index reducing the search in this index [5]. The 

same problem might happen in the hash index, hash collisions which slow down the search in the hash index [11]. 

The below pseudocode revealed a significant impaction of the PTHP index, reducing overlapping computational time 

complexity to be O([(N/2)]* Log2(N/2)) as a linear time complexity instead of O(N)2 under worst-case when half of the 

dataset reads loaded into the hash group that starts with of (CG). 
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In order to evaluate the PTHP index, simulation datasets are prepared by iteratively extracting part of the Escherichia 

Coli genome reference genome, which was downloaded from NCBI under accession number (CU928164.2). We 

extracted four random regions with lengths of 10080 bases, 20160 bases, 40320 bases, and 161280basese 

respectively, to be used as reference genomes. Three read datasets were extracted from each previously simulated 

reference genome with read lengths of 201 bases, 251 bases, and 301 bases. The main reason to generate datasets 

with different read lengths and read counts is to evaluate the impact of the read length and read count on PTHP index 

time complexity. Reads are extracted from the reference genomes for each length three times by skipping 25 letters, 

50 letters, and 100 letters, as shown in the below pseudo code, to achieve enough coverage. 

 

PTHP index tested on the simulation of four datasets with the same read length of 201 bases and different read 

counts, 1212, 2205, 4028, and 15922, respectively, three times using the native prefix tree index [32], native hash 

index [33] and PTHP index. The over-lapping run iteratively started with an overlapping length of 200 and decreased 

by one every iteration until 140 bases which consider 40% of the read length according to the recommended minimum 

imperial overlapping length [34]. Figure (6) below shows significant computational time complexity reduction when 

using the PTHP index. For example, at read count 2205, the maximum number of iterations to find a suffix-prefix 

match for overlapping using a hash index is 6130 O(2.8N), and PT index is 3400 O(1.5N), while PTHP performs the 

overlapping suffix-prefix search in only 433 iterations,  which is O (0.2N). The PTHP index reveals a significant 

reduction in iterations number, approximately lower computational time complexity fourteen times than the hash index, 

and seven times more than the prefix tree index. 
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Figure 6. Example of indexing two reads using PTHP index 21 
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At the same read length of 201 bases, As a result of reducing the number of iterations to find the overlapping 

(computational time complexity), the overlapping time is significantly reduced using the PTHP index compared to the 

prefix tree index and hash index. For example, in figure (7), at read count 4028, the average overlapping time of the 

hash index is approximately 1.12 seconds, the prefix tree index is 0.60 seconds, while the  PTHP index average 

overlapping time is only 0.05 seconds, approximately 22 times faster than the hash index and 12 times faster than 

the PT index. 

 

The PTHP index was also tested on the real dataset for the Escherichia coli genome used by [21] in a superior Prefix 

tree and pigeonhole solution to solve the all-suffix-prefix problem in overlapping. The PTHP index runs on the same 

server specifications at the same overlapping length of 30 bases. The results reveal that PTHP, with the combination 

of prefix tree index, hash index, and parallelization, outperforms both PT and PH solution proposed by [21] in terms 

of time and space consumption. Table (1) shows that PTHP performs the overlapping of the dataset in just 5 seconds, 

which is approximately nine times faster than the PH solution. PTHP stores the read and its index keys in the same 

row. This implementation results in the low space needed to store and run the PTHP in-dex. As shown in Table (1), 

the PTHP index is stored in 144.4 MB, PT at 230 MB, and PH at 298 MB. Table (1) also shows the significant impact 

of parallelization on speeding up the overlapping process. For example, the total overlapping time when running the 

PTHP index in one Node is 23 seconds, while it is approximately faster five times when running the PTHP index on 

four nodes. 

Table 1. Comparison between PT index, PH solution and PTHP index in space and time consumption 

 PT PH PTHP on one Node PTHP on 4 Nodes 

Space consumption 230 MB 298 MB 200.5 MB 144.2 MB 

Time consumption 757 second 49 second 23 Seconds 5 Seconds 

C. PTHP Index for read alignment 

PTHP index store the indexed reads as non-overlapped partitions reducing the number of reiterations aligning the 

reads to the reference genome by the index hit and pattern partition match. The PTHP index is tested for read 

alignment on the simulation datasets for two different read counts, 388 and 804, respectively, with the same read 

length of 201 bases. The results in Figure (8) show the maximum read alignment time complexity with the hash index 

 1 

 2 

 3 

Figure 7. Example of indexing two reads using PTHP index 4 
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is 390820, which is approximately O(486N), the PT index is 190043which is O(236N), while the PTHP index is only 

16311, which is O(20N), 24 times lower complexity than the hash index and 12 times lower complexity than PT index. 

 

The results of the PTHP index in Figure (9) at the same read length of 201 bases reveal a significant reduction in 

alignment time. For example, at reads count 804, the average read alignment time in the hash index is 3104 seconds, 

and the PT index is 858 seconds, while the PTHP index performs alignment in only 141 seconds, which is 

approximately faster 22 times than the hash index and six times than PT index. 
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Figure 8. Example of indexing two reads using PTHP index 22 
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Figure 9. Example of indexing two reads using PTHP index 4 
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Figure (10) also shows another factor that impacts the alignment time complexity: partition size. In Figure (10), at 

read count 804, the time complexity reduced from 16331 to 12221, then 10242 when the window size increased from 

51 to 67, then 101, respectively. According to the pattern match between partitions, when the window (partition) size 

is increased from 51 to 67, the number of petitions is less; thus, the number of patterns is reduced, reducing alignment 

time complexity because the number of patterns is lower with lower partition numbers. 

 

Also, we tested the PTHP index for read alignment in the real dataset of the human genome with 5 million reads from 

NCB accession numbers SRR826460 and SRR826471 against the reference genome hg19 downloaded from NCBI. 

The computational time complexity of the FEM [21] method using the only hash index is  569985422, which is 

O(113N), and the total read alignment time is 48 seconds. Using the PTHP index with the combination of prefix tree 

index, hash index, and pigeonhole concept to perform the read alignment on the same dataset reveals significant 

results in reducing the computational time complexity to only 152120444, which is O(30N) and performing the read 

alignment in 15 seconds, which is faster 3.7 times than FEM method as shown in Table (2). 

Table 2 Comparison between FEM index and PTHP index on the human genome read alignment 

Genome Reference Index type Alignment computational 

time complexity 

Total Alignment time 

Human 

Genome 

FEM Method Hash index 569985422 iterations 48 seconds 

PTHP index PTHP index 152120444 iterations 15 seconds 

Also, we tested the PTHP index for read alignment in the real dataset of the human genome with 3 million reads 

downloaded from platinum genome ERR194161. The computational time complexity of the ERT method [23] using 

an enhanced prefix tree index is  1463585220, which is O(487N), and the total read alignment time is 6912 seconds. 

As shown in Table (3), using the PTHP index reduces the computational time complexity to only 364952633, which 

is O(121N), and performs the read alignment in 4210 seconds, which is faster four times than the ERT index. 
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Figure 10. Example of indexing two reads using PTHP index 5 
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Table 3 Table 4 Comparison between ERT index and PTHP index on the human genome read alignment 

Genome Reference Index type Alignment 

computational 

time complexity 

Total 

Alignment 

time 

Human 

Genome 

hg19 

ERT Method Prefix tree index 1463585220 

iterations 

6912 

seconds 

PTHP index PTHP index 364952633 

iterations 

2210 

seconds 

D. PTHP Index for Optimizing Assembly Hybrid Approach 

DACCOR is a hybrid assembly [31] with no performance optimization, and it remains its performance optimization is 

declared as the future work of that study. For this reason, we evaluated PTHP to optimize DACCOR as an example 

of the hybrid assembly approach. , First, we downloaded DACCOR tools from (https://github.com/Integrative-

Transcriptomics/Daccor) then ran DACCOR on Treponema pallidum genome using the exact server specification 

used by DACCOR (4 CPU cores and 500 GB of RAM) and recorded its overlapping computational time complexity, 

read alignment computational time complexity. Also, we recorded the total overlapping time and read alignment time. 

Second, we run the same experiment on the same server using the same dataset using the PTHP index. Table (4) 

shows that the overlapping time complexity of DACCOR[31] is 4253350, which is O(81N), while the number of reads 

is 52032. PTHP index run for overlapping on the same dataset reveals a significant reduction of the overlapping 

computational time complexity to be only O(23N) which speeds up the overlapping in DACCOR 3.5 times faster. Read 

alignment was also tested using the PTHP index, and Table (4.6) shows that the read alignment time complexity of 

DACCOR is 1235856 O(23N). When using the PTHP index, the read alignment computational time complexity is only 

O(9.5N) which speeds up the read alignment in DACCOR 2.4 times faster than DACCOR. The total assembly time in 

DACCOR without indexing is 321 seconds, while using DACCOR with the PTHP index is only 134, which is 2.3X 

faster. 

Table 5 PTHP index to optimize the overlapping and read alignment in the DACCOR hybrid assembly 

approach 

Method Overlapping 

computational 

time complexity 

Overlapping 

Time 

Read alignment  

computational 

time complexity 

Alignment 

time 

Total 

Assembly 

time 

DACCOR without index 4253350 76 S 1235856 245 S 321 S 

DACCOR with PTHP index 1221354 22 S 494831 112 S 134 S 

5. CONCLUSION 

Genome data is very massive data. Millions of reads need to be assembled. Overlapping millions of reads in de novo 

or aligning them against billions of k-mers of the reference genome is a very high computational challenge. 

Tremendous efforts introduce solutions to optimize overlapping and read alignment in each approach, individually 

using prefix tree index, hash index, and pigeonhole concept. Parallelization is introduced on genome data in some 

stages of genome assembly, such as streaming reads from big genome FASTA files and the construction of some 

indexing methods. However, the construction time is the bottleneck of the prefix tree index, while the collision is the 

bottleneck of the hash index. Also, no parallelization has been introduced for all stages of genome assembly.   

Regardless of individual efforts to enhance overlapping or reads alignment individually,  the optimization of both 

together in the hybrid assembly approach is still a big challenge. 

This article introduces the PTHP index as an enterprise solution to fit the optimization of overlapping and read 

alignment together. The PTHP index combines the prefix tree index with fixed depth reducing its construction time, 

with the constructed hash in-dex at each leaf of constructed prefix tree, reducing its collision degree. This combination 

outperforms both, adding significant optimization of overlapping in linear time complexity. The pigeonhole concept of 

PTPH with parallelization significantly speeds up the read's alignment process. PTHP index on real datasets reveals 

significant optimization results for overlapping and read alignment in terms of computational time complexity and total 

time. 
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Using the PTHP index to optimize the hybrid assembly, DACCOR reveals a total assembly time of 2.3X faster. 

The future work of this study is to increase the level of parallelization by implementing the PTHP index on eight and 

sixteen nodes to optimize the performance of hybrid assembly for giant genomes such as the Human genome. 
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