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Abstracts: The effects of temperature of dusty fluid flow in a weak magnetic field are investigated in this paper. The 
motion of dusty fluid is affected by a homogeneous magnetic field that runs in the same direction as the fluid. Parameters 
include longitudinal velocity, Hartmann number; dust particle interactions, stock resistance, Reynolds number, and 
magnetic Reynolds number fully characterize the topic that is being studied. The obtained partial differential equations 
are translated into an ode system using appropriate similarity transformations. To solve these equations numerically we 
use, the Laplace Transform technique. The result shows the temperature of fluid particle reduced significantly in the 
magnetic field. 
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Nomenclature   

f - dimensionless stress function   

m - magnetic parameter  

pr - prandtl number   

b0 - magnetic field intensity   

cf - local skin friction coefficient   

re - reynolds number    

t - fluid temperature   

u - fluid velocity along x-axis   

u0 - reference velocity  

 v - fluid velocity along y-axis 

 

1. INTRODUCTION  

In addition, no one has tried to investigate consequences of physical characterizing parameters on induced 

magnetic profile, such as the magnetic Reynolds number, despite the fact that many researchers have observed the 

fluid flow from a variety of angles without focusing on the impact of the fluid flow and the generated magnetic field or 

on the skin friction. 

The present study fills this knowledge gap by investigating the impact of an induced magnetic field on the 

temperature flow of incompressible dusty fluid in a tube. Dusty fluid boundary layer issues have been studied for a 
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long time. A number of authors, including Sakiadies (1961), Girresha (2012), and Mudassar (2017), have 

investigated both pulsating and the constant motion of incompressible fluids. The presence of a magnetic field has 

made the study of stable dusty fluid flow under fluid flow a topic in the area of applied mathematics. Several 

scientists have been able to analyze the Profiles of temperature, pressure, heat transmission, and dust fluid flow 

velocity as a function of many physical characterizing characteristics like the magnetic parameter, the parameters of 

the fluid particles, and the parameters of the dust particles. 

This article examines the topic of boundary layer fluid flow from the perspective of a number of researchers, and 

it discusses a selection of their observations in order to determine the extent to which those observations and the 

present study diverge. This study aims to shed light on these researchers' work by introducing the magnetic 

induction equation to the equations describing the steady incompressible flow of dust particles through a boundary 

layer. This is a vital area of research that has attracted the attention of many modern mathematicians. 

Using both mathematical and numerical approaches, Prandtl (1904) and Sakiadies (1961) investigated boundary 

layer flow and constant velocity travel, and Prandtl subsequently developed an expression for a boundary layer in 

two dimensions and axisymmetric flow. 

He looked into how factors like pressure, suction, the Prandtl number, and the Eckert number affected the flow 

of fluid, among other physical parameters. This allowed him to discover that the fluid phase velocity (U) did not 

change significantly, while the particles phase velocity (Up) changed as the fluid particle interaction parameters 

increased. In addition, the temperature gradient and surface heat transfer were both enhanced for fluids with a 

higher Prandtl number due to the thinner thermal boundary layer. When the suction parameter was increased, he 

saw a drop in the fluid velocity (U), which he associated with a considerable rise in the dust particle phase velocity 

(Up) (fo). After reviewing the aforementioned research, Mudassar J. et al. (2017) investigated the solution of 

boundary flow of dusty fluid flow with an applied magnetic field. By defining his issue in terms of the fluid-particle 

interaction parameter (β), the magnetic field parameter (M), and the dust-particle mass concentration parameter (γ), 

he found that a rise in the magnetic parameter increased Lorentz force, causing a drop in fluid velocity. 

We spoke about the incompressible fluid's heat in cylindrical polar coordinates and how a magnetic field affects 

it. Think about how the jet's speed and temperature varies somewhat from the steam all around it. To achieve this 

linearization of the governing differential equations, the perturbation approach has been used [1, 2]. The velocity of 

the dusty fluid is described, and the differential equations are solved using the Laplace transformation, in our 

previous works [8, 12]. Particle heat profiles under perturbation have been used to highlight numerical issues. This 

demonstrates a significant diminishment in the heat particle perturbation magnitude.  

2.  MATHEMATICAL FORMULATION 

The axi-symmetric boundary layer flow regulating differential equation is represented in cylindrical polar 

coordinates as   

Fluid-phase heat equation 
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Heat Equation in Particle phase 
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In order to study the boundary layer flow, the dimensionless variables are provided. 
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We may now assume, the pressure at the exit is the same as the pressure in the surrounding stream. The 

temperature of the jet is just slightly higher than the nearby stream's soundscape. The viscosity coefficient and 

thermal conductivity K are assumed to be fixed parameters. Afterwards you'll be able to put pen to paper.  

10110
,,,,, 10110 pppppppp TTTTTTvvuuuvvuuu +=+==+==+=   

Where the subscripts 1 denote disturbed values that are noticeably smaller than the fundamental values with 

subscripts'0,' i.e., the surrounding stream. ,TT,uu,uu 10pp10 10
  

10 pp TT  . After the elimination of the 

constant term, the nonlinear equations (1) and (2) may be rewritten in terms of the dimensionless variable and 

perturbation method. 
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The boundary conditions for 
11 pp11 vandu,v,u  are 
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Similarly, the boundary conditions for 
1p1 T,T  are 
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Particle density 
1p is constrained by the following boundaries: 
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3. METHODLOGY: 

Using the Laplace transform method, we solved the governing linearized equation (4) by plugging in the 

necessary conditions from (5.1) through (9). 
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In which the Bessel functions of zero and first order, denoted as J0 and J1, are located. 
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4. RESULTS AND DISCUSSION:  

Taking into account the following factors, numerical computations have been made. Pr = 0.72, u10 = up10 = T10 = 

Tp10 = p10 = 0.1,  = 0.01. 

 
Figure 1: Perturbed Fluid Phase Temperature 

 

 
Figure 2: Perturbed particle  Phase Temperature 

Figure 1 shows the profiles of perturbation fluid phase temperature T1 and Figure 2 displays the profiles of 

perturbed particle phase temperature Tp1 for α = 0.2 and for various values of Z, respectively. When r = 0, the fluid 

and particle temperatures are at their highest. It was also shown that, when a magnetic field is present, the 

temperature of the particles is less than that of the fluid. 

Validation of results: Numerical computations are performed for both the velocity and temperature of fluid and 

particle phase in order to obtain the physical features of the problem and to discuss the results. It is found that the 

results of this study coincide with the results of B.k Rath [16]  
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CONCLUSION  

In the incompressible dusty fluid, we have studied the temperature fluid flow of particles in a magnetic field and 

used the equation of heat in fluid phase and particle phase. The solution is obtained by solving   linearized 

governing differential equation   using Laplace transformation.  

For different values of concentric parameter and different values of z, the particle temperature reduced. 
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