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Abstract: This in-depth examination review about pythonic paradigms for quick hardware prototyping and 
instrumentation to solve the widening gap between the fluidity of software development and the more conventional 
methodology used in hardware design. The proliferation of specialized hardware and accelerators has resulted in an 
increased necessity for development strategies that are flexible. Reconfigurable hardware, such as FPGAs and coarse-
grain reconfigurable arrays, enables incremental changes in early design stages, which is a key component of agile 
software development. This article goes into modern agile development methods, emphasizing the integration of 
services, repositories, and specialized tools to meet particular users' requirements. Continuous improvement in areas 
such as software and hardware design, testing, analysis, and evaluation, as well as collaboration with current 
development tools, are all supported by an ecosystem that has been successfully integrated. 
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1. INTRODUCTION 

A mismatch has emerged in the development flow between the more top-down waterfall technique of development 

that predominates in traditional hardware design and the faster cycles predicted by software due to the recent growth 

in specialized gadgets and accelerators to boost performance and energy efficiency. The recent surge in specialized 

hardware and accelerators to boost performance and energy efficiency is the cause of this discrepancy [1]. "Field-

programmable gate arrays (FPGAs)" and coarse-grain reconfigurable arrays are two examples of reconfigurable 

hardware that can be used. These devices are particularly noteworthy because they further facilitate agile 

development by enabling the gradual improvement and modification of early roll-out designs [2]. However, based on 

what we've observed, most modern agile development models heavily rely on a varied ecosystem of tools, documents, 

and services that can be customized to meet the unique demands of the user and integrated seamlessly into the 

workflow. This ecosystem allows for continuous improvement of the entire process of development when it is 

integrated effectively [3]. This involves not only the hardware and software design but also test, analysis, and 

evaluation in addition to the way it integrates with the development tools already in use. 

2. DIFFERENT PYTHON BASED HADRWARE ARCHITECTURE 
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a. PyRTL 

Python's use in the production of hardware, particularly for quick prototyping and architectural tradeoff evaluation, has 

seen a substantial uptick in popularity over the past few years. The hardware development process has been 

significantly sped up, and its efficiency has been significantly improved as a direct result of this transition [4]. Python 

supports hardware prototyping and instrumentation, specifically through the framework known as PyRTL [3]. The shift 

toward more integrated hardware acceleration logic, which includes components with both programmable and fixed 

functionality, has made it more difficult to understand systems in their entirety. In light of this, a paper investigates the 

difficulties associated with hardware instrumentation and analysis as well as the potential solutions to those difficulties 

[3]. 

“Gate-Level Information Flow Tracking”: Information flow analysis plays a critical role when assessing the security 

features of hardware designs. The scope of information flow analysis can now be brought down to the hardware level 

with the help of GLIFT, an example tool for "Gate-Level Information Flow Tracking. It monitors the "taintedness" of 

values and looks for unwanted flows in order to maintain the confidentiality and authenticity of the data. PyRTL's 

instrumentation architecture enables the smooth implementation of GLIFT, in which additional "shadow" hardware is 

introduced to track "taintedness" and calculate the taintedness of wire outcomes. This is made possible by the use of 

GLIFT's taint tracking capabilities. The negligible influence on performance and the condensed code (72 lines) 

indicate how straightforward it is to construct such instruments [5]. 

PyRTL's Instrumentation:  API is the lynchpin that makes it possible to make hardware instrumentation available 

and efficient. This application programming interface simplifies the process of gathering often-required information 

and making hardware modifications. The Instrumentation API is comprised of a number of crucial components, 

including the following: 

Iterator for Topological Sorting: An iterator is made available by the instrumentation framework of PyRTL. This iterator 

ensures that a logical action is only returned after its preceding actions, which maintains the flow of data. This ensures 

that the activities are completed correctly, reducing the need for extra verification. 

Net Connections: The framework provides the function net_connections, which tracks which wires are linked to nets 

and which networks use the wire. This helps improve performance and avoid confusion by keeping track of which 

wires are connected to which nets. The circuit can be traversed and transformed more effectively with the use of this 

information. 

Wire and Logic Replacement: Changing a piece of hardware's logical and electrical components can be difficult and 

time-consuming. PyRTL's application programming interface (API) streamlines this procedure by offering 

wire_transform and net_transform methods, which enable element substitution in a more organized fashion. 

Python, using frameworks such as PyRTL, has substantially contributed to the increased productivity and adaptability 

of the hardware prototyping and instrumentation industries. The comparison in Table 1 demonstrates how proficient 

Python is in hardware design [5]. 

Comparison of PyRTL + Verilog Designs 

Design Area (sq. µm) Delay (ns) Gate Count Lines of Code 

PyRTL Design 1 1250 3.2 8500 1600 

Verilog Design 1 1270 3.3 8600 1750 

PyRTL Design 2 980 2.8 7200 1400 

Verilog Design 2 1000 2.9 7300 1600 

PyRTL Design 3 1350 3.5 9200 1850 

Verilog Design 3 1380 3.6 9300 2000 
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The table provides a comparative examination of hardware designs that have been implemented in both PyRTL and 

Verilog. The table focuses on key metrics such as area, latency, gate count, and lines of code. The table below 

highlights the significance of determining the effectiveness of Pythonic hardware designs. Notably, the findings 

indicate that PyRTL designs typically display delay and gate counts that are comparable to their Verilog counterparts. 

This suggests that Python's function in hardware prototyping is not affected by worries of inefficiency. 

b. PyRTL-Matrix 

Creating plans for the apparatus Pythonically provides an option that is more approachable than the high learning 

curves associated with standard Hardware Description Languages (HDLs) like Verilog. PyRTL is a high-level 

hardware description language (HDL) written in Python. It emerges as a powerful and easy-to-use tool in this setting 

because it places an emphasis on simplicity, usefulness, clarity, and flexibility in hardware design [6]. PyRTL is unique 

among its contemporaries in that it places a larger focus on clarity and abstractions over-optimization. This enables 

it to be used for the analysis and design of hardware. PyRTL gives its users a high-level comprehension of the process 

of creating hardware as well as its analysis and testing by introducing an intermediate structure supported by an 

extensive toolchain [7]. 

The most crucial stage of the procedure is called the inference phase, and it is comprised of "matrix multiplication 

operations" involving the input and weighted matrix vectors in each layer of a neural network. To make the 

development of such matrix operations easier and their implementation simpler, the PyRTLMatrix class was created. 

PyRTLMatrix makes the application more user-friendly by abstracting the hardware that is required to represent matrix 

operations [8]. A PyRTLMatrix instance is essentially a wire bus that routes data through logical computations that 

mimic matrix operations. In addition to previously developed PyRTLMatrix routines, this solution includes basic PyRTL 

multiplication methods. More comprehensible function designs are produced by using an object-oriented approach to 

hardware design. The decorator pattern is also utilized by the PyRTLMatrix class to ensure that every element has a 

bitwidth that is consistent with every other element. While this approach might expedite the testing procedure and 

provide precise outcomes, it sacrifices other advantages in the process. It is possible for users to feel as though they 

are not fully integrated into the hardware implementation, which is akin to a more software-like approach. However, 

low-level control and comprehension may become more challenging as a result of this abstraction [9]. 

Training parameters are shared by the software networks in PyTorch and the hardware networks in PyRTL, as Figure 

1 [10] illustrates. The computer network in PyTorch and its hardware equivalent in PyRTL make up the two 

fundamental parts of this hardware-software pipeline. Smooth translation between the two networks is made possible 

by this arrangement, which is fully Python-based. Unlike the typical challenges associated with HDLs, the PyRTL 

framework presents a viable route towards hardware design and analysis. One can compare this to the traditional 

HDLs. It offers hardware designers an approachable starting point by emphasizing simplicity, abstraction, and clarity, 

opening up new avenues for the development and implementation of hardware systems [6]. 

 

Figure 1: Conversion of PyTorch's training parameters into those of PyRTL [6]. 

c. PyRTL-Matrix 

PyMTL3 is a framework with the goal of providing hardware designers with a platform that is flexible, modular, and 

extendable [11]. This platform will give hardware designers the ability to customize their workflow by selecting different 

"flow steps." In addition, it makes very minor adjustments to the preexisting code to cater to the ever-changing 

requirements of RTL designers and computer architects. PyMTL3 takes its cues for its design from LLVM, which has 

a rigorously modular architecture. This architecture separates the frontend integrated "domain-specific language 

(DSL), intermediate representation (IR), and passes". The embedded DSL in PyMTL3 reveals modeling primitives, 

allowing designers to describe hardware, build test benches, and define parameters. PyMTL3 is the component that 

is accountable for the development of the hardware model as well as the generation of an "in-memory intermediate 

representation (IMIR)". The IMIR includes application programming interfaces (APIs), allowing users to retrieve and 
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edit the metadata stored for the full hierarchical model [12]. PyMTL3's IMIR provides a model-level perspective of the 

complete design hierarchy, in contrast to other intermediate hardware representations, such as FIRRTL and CoreIR, 

which concentrate their efforts primarily on the modeling of circuits. This not only offers RTL circuits but concurrent 

and functional-level techniques as well as update blocks that are able to include arbitrary Python code. 

The PyMTL3 framework allows designers to use passes, which are predetermined programs that engage in 

conversation with the IMIR. These passes are divided into three categories: analysis, instrumentation, and 

transformation passes. Each of these passes serves a particular function: 

Analysis Passes: These passes generate valuable outputs by performing in-depth analysis on the PyMTL3 IMIR 

model. They give valuable insight into the plan without impacting the framework of the model in any way. 

Instrumentation Passes: Instrument passes offer new functions to the model, expanding its capabilities without 

altering the hierarchical structure of the model. These passes give designers new tools that they can use to better 

understand and manipulate the design. 

Transform Passes: The model hierarchy is changed via transform passes. They enable structural changes to the 

design by adding, removing, or replacing sections of the model [11]. 

d. MyHDL 

MyHDL is a language designed to make hardware creation accessible to beginners by utilizing the Python framework 

to accomplish HDL needs. (40) MyHDL is the product of MyHDL. With specific integrated libraries, it is simple to 

convert MyHDL code to Verilog or VHDL, and you may use constructs to quickly validate the designs. While this 

language's HDL description is similar to Verilog's, the verification procedure for this language is simpler. With MyHDL, 

waveform viewing is also available. Lightweight, interactive threads that communicate with one another are used in 

MyHDL to represent hardware. Specifically, generators—modules that wait for a certain signal to perform an action 

and communicate with one another through generator functions—are at the core of the structure of the MyHDL 

description language. Furthermore, generator operations enable the state of the functions that are now in use to be 

preserved and resumed as needed. They can therefore be used as extremely light threads. This approach will make 

it feasible to send control-related data to the specialized real-time simulator. Finally, by converting MyHDL's code into 

Verilog, other HDL simulators can co-simulate with it. MyHDL is responsible for enabling this feature [6]. 

e. PHDL 

A Python framework called Python Hardware Description Language (PHDL) [6] aims to increase the virtualization of 

hardware design and hence increase the amount of awareness of the jobs that designers perform. Python Hardware 

Description Language is referred to as PHDL. The two main parts of the PHDL framework are framework subclasses 

and component libraries, which contain pre-made descriptions of low-level components. There are two components 

available for users. The three main categories of items that designers use while building components and systems 

are connectors, elements, and connections. Connectors are figurative representations of single wires as well as 

specific wire groups. Meta-components are in charge of determining which component is most suited for a given 

design, whereas vanilla components carry out the logic. A PHDL component can be one of these two types. 

Connection objects manage the process of joining two or more connectors. While the designers build connections as 

functions, the PHDL offers templates that the designers can utilize to develop components and circuits as classes. 

Finally, but just as importantly, PHDL allows hardware modules to be parameterized and integrated with existing 

libraries via a wrapper. 

f. ArchHDL 

ArchHDL [13] is a high-level description language (HDL) for RTL modeling that is based on C++ and places an 

emphasis on providing user-friendly module descriptions as well as extensible testbench specifications. The major 

goal of ArchHDL is to increase the speed at which hardware simulation can be performed while also making it easier 

to access hardware implementation. Code that was written with the ArchHDL library, which provides capabilities such 

as non-blocking allocations and all Verilog constructs, can be simply compiled with a C++ compiler, parallelized with 

OpenMP, and simulated with the hardware design running the resulting binary. Designers can do all of this with ease. 

Because of these considerations, it is possible to significantly outpace the Synopsys VCS simulator in terms of 
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simulation speed. ArchHDL has some restrictions, despite the fact that it shares all of C++'s advantages. As a result 

of the necessity for ArchHDL to be converted into Verilog, the ArchHDL framework only supports the data types used 

in Verilog. In instance, the construction of some ArchHDL types of data directly originates from C++ ones, such as 

the wire and integer types, which come from the C++ integer. This necessitates the inclusion of various limits (for 

example, arrays can only be a maximum of bi-dimensional), as a result of which some ArchHDL data categories can 

only be implemented as bi-dimensional.  

3. DIFFERENT STUDIES 

"Traditional HDLs" have a steep learning curve that might take a very long period, even for seasoned engineers. 

However, HLS approaches have the potential to increase the abstraction level and split standard C/C++ functions 

into logic components. Nevertheless, there is currently no clear-cut route that can be taken to create an ideal design 

without prior hardware engineering expertise. By enabling programmers to explicitly express their hardware designs 

utilizing a language they have become familiar with, PyRTL aims to provide an option that sits midway between these 

two extremes. This wasn't the first attempt, as was to be anticipated, to address this requirement. One Scala project 

that tries to achieve similar goals to PyRTL is called Chisel [14]. In this sense, Chisel is akin to PyRTL as an elaborate-

through-execution hardware development language. OpenRISC is one of the many great research initiatives that 

makes use of the powerful tool chisel. In addition to labeled cable hierarchies and signed types, it offers a well-

constructed control framework. While Chisel has concentrated on creating a comprehensive toolchain, PyRTL has 

concentrated on creating a comprehensive toolchain that is useful for educational initiatives. It also provides a 

reasonably well-defined intermediate structure that makes hardware analysis routine development quick and simple. 

Haskell-based ClaSH [15] is a domain-specific language for embedded hardware descriptions. ClaSH offers a 

technique that works with both synchronous and combinational sequential circuits, and it makes it possible to convert 

these high-level specifications into low-level representations that Verilog HDL may be used to synthesis. PyRTL and 

this functionality are similar. Unlike PyRTL, which is built on Python, one of the most widely used languages that 

supports imperative and functional style programming, the user of ClaSH has to deal with the challenges specific to 

functional programming. Based on Python is PyRTL. Furthermore, designs must be statically typed, much like VHDL. 

More specifically, variable types in PyRTL can be deduced while a Python program is running, eliminating the 

requirement for explicit definitions in the source code. This facilitates the design of reusable structures. Python is the 

engine behind two hardware design programs: PyMTL [17] and MyHDL [16]. Generators and decorators serve as the 

foundation for MyHDL, an embedded language that allows higher-level modeling as well as asynchronous logic with 

semantics akin to those of Verilog. Still, only a structural "convertible subset" of the language's syntax might be 

automatically translated into hardware, just like with conventional HDLs. One benefit of the language is this. It is 

possible to simulate and model at many different stages of the design process with PyMTL. The Python Abstract 

Syntax Tree parsing process facilitates the automatic translation of executable software specifications into hardware, 

much like My HDL does. Still, there are some restrictions on this technique. Unlike these other methods, PyRTL 

always works inside a single clock domain and does not incorporate unsynthesized hardware foundations (i.e., 

composable set data structures-based bottom-up development). This is of tremendous assistance to less frequent 

users, for whom it is still not clear why some programs can be generated while other scripts cannot. It also has a 

hardware instrumentation framework  that provides quick and easy ways to walk through accelerator functionality and 

enhance it in PyRTL. The SysPy project [18]adopts a novel perspective on the problem of hardware realization, 

making it more approachable. The authors offered a "glue software" method to bridge the gap between programming 

expressions and their corresponding hardware implementations, utilizing pre-made VHDL components and 

programmable microcontroller soft IP cores. Moreover, utilizing pre-existing HDL elements that may be exported from 

frameworks that already exist is another objective of PHDL [5]. 

To keep up with the ever-increasing need for higher performance, there has recently been a remarkable growth in 

artificial intelligence acceleration. For the purpose of converting high-level code into hardware, high-level synthesis, 

or HLS, technologies give programmers the ability to abstract away the complexity of hardware design. For example, 

Richmond et al., [17] demonstrate how the power of higher-order functions can be included in the electronics design 

using C/C++. It does this by employing a syntax that is comparable to that of modern software languages in order to 

provide a higher-level abstraction of hardware design. These issues include low-level programming, registers, and 

scheduling. Using traditional HDLs to design hardware is associated with a wide variety of challenges, some of which 

are listed above. Similarly, SPA-TIAL [19]is a domain-specific language and compiler that enables increased 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 3, pp 2902-2908 

2907 

productivity through software ideas such as nested loops while enabling access to explicitly access to lower-level 

notions such as memory hierarchy and memory transfers. Other HLS tools, such as TABLA[20], are explicitly geared 

towards machine learning and operate as accelerator generators for machine learning algorithms. These tools are 

also available. However, in contrast to TABLA, our work concentrates more on a design flow as opposed to 

automatically producing hardware based on a stated learning model. This is because TABLA was developed to 

automatically generate hardware. Traditional HDLs, like Verilog, are notoriously challenging to understand and apply, 

particularly for software engineers; they also lack the modularity necessary to reuse components. As a result, other 

tools have been developed that enable developers to build hardware using interfaces more akin to those used in 

software.  

4. CONCLUSION 

In the end, this review describes pythonic paradigms have brought in a new era of quick hardware prototyping and 

instrumentation. This era has been made possible by the rise of the Internet of Things. The historically difficult and 

time-consuming process of hardware design has been greatly simplified because to Python's adaptability, which is 

shown by frameworks such as PyRTL, and PyMTL3. Python gives engineers and software developers the ability to 

solve complex hardware difficulties in an effective manner. It does this by providing a seamless integration of the 

development of both hardware and software. Python's ability to make hardware design more approachable, efficient, 

and agile positions it to play a major role in determining the direction that the future of hardware creation will take. 

The need for specialized hardware is expected to continue to climb. 
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