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Abstracts: This research presents a comprehensive study focused on precipitation prediction for the Dead Sea region 
utilizing the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The investigation seeks to interpret 
the accuracy and reliability of the SARIMA model's predictions by comparing them with predictions derived from climate 
modeling techniques. The evaluation is based on key performance metrics, including Mean Squared Error (MSE), Mean 
Absolute Error (MAE), and Root Mean Squared Error (RMSE). Additionally, the paper examines the SARIMA model's 
predictive capabilities through a comparison with actual observations spanning the period from 2010 to 2022. The 
obtained results reveal an MSE of 12.84593, an MAE of 2.34407, and an RMSE of 3.584123 for this period. 
Significantly, the SARIMA model surpasses the predictions of prominent climate models (CMIP6), namely 
ACCESS_CM2, Earth3_Veg, GISS_E2, and HadGEM3, based on comparative performance assessments. The findings 
emphasize the robustness of the SARIMA model in capturing the essence of the observations and predicting 
precipitation patterns, not only through its superior performance against climate models but also through its alignment 
with actual observations. This study contributes to a deeper understanding of precipitation prediction in the Dead Sea 
region and underscores the potential of the SARIMA model in enhancing forecasting accuracy for hydrological and 
climatic investigations. 
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1. INTRODUCTION  

The Dead Sea is located in the Jordan Rift Valley at 430 meters (1,410 feet) below sea level, it is the lowest 

point on Earth's surface, with a salinity of 342 grams per liter, which is roughly ten times saltier than the ocean, 

additionally, the Dead Sea is also the saltiest body of water on Earth and has a depth of 300 meters, making it the 

deepest hypersaline lake [1] [2] The Jordan River and a number of other smaller tributaries feed the Dead Sea [3]. 

The Dead Sea's water level has been dropping for ages, though. The Dead Sea has experienced a slow but 

worrying decline in water levels over the past few decades; this complicated problem is a result of complex 

interactions between natural processes, anthropogenic activity, and local water management practices. The Jordan 

River's declining flow, which has historically been the main supply of water used for recharging the Dead Sea, is at 

the core of this problem. The building of dams diverted water for industrial and agricultural uses are some of the 

causes of this drop in river inflow. The hydrological equilibrium of the Dead Sea has been significantly impacted by 

the resulting decrease in water inflow, which has had a negative impact on the environment and society. The drop 

of water level in the Dead Sea Lake was estimated to be more than 35% overall during the past thirty years as a 

result of the water level reduction, which was reported to be occurring at a rate of more than one meter per year [4], 

[5]. 

It has become clear that the precipitation pattern in Jordan is inconsistent [6], [7], which calls for careful scientific 

investigation and thorough research. This drop in rainfall has effects on the hydrological and biological dynamics of 

the Dead Sea environment because it has been seen over a long period of time. This decrease in rainfall has been 

attributed to the region's mainly arid and semiarid climate, in addition to larger-scale climatic patterns and shifts. For 

instance, the mean total precipitation in the Amman Zarqa basin for the years 1971 through 2002 was 215.1 mm, 

however, the mean total precipitation for the years 2003 through 2016 was statistically lower at 181.3 mm. Fall, 

winter, and spring combined precipitation decreased from 31.8, 137.6, and 46.1 mm to 24.8, 127.4, and 29.8 mm, 
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respectively. The patterns of seasonal precipitation distribution between 1971 and 2016 appeared to decline which 

could have an impact on the dead sea water level [8]. 

This paper explores the modern difficulties in forecasting rainfall amounts in the Dead Sea basin. The goal of the 

paper is to offer insights into improving rainfall forecasting accuracy by concentrating on the application of the 

SARIMA (Seasonal Autoregressive Integrated Moving Average) statistical model. A comparison of SARIMA results 

with climate models outputs was conducted to investigate its efficiency against the newest ensemble climate 

projection models CMIP6 under the expected future socio-economic pathway of Jordan in the middle road of 

challenges ssp245. The rest of the paper is structured as the following: a description of the study area, material and 

method used in this research, major results and findings, a discussion, and finally a conclusion.    

1.1. The Study Area  

The study focuses on the precipitation prediction for the Jordanian shores of the dead sea. Figure 1.a shows the 

study area location in the middle western parts of Jordan. The Figure illustrates surface water basins across Jordan 

and within the Dead Sea Basin. The basin extends from 31.805 ͦ top, 31.2225 ͦ bottom, 35.485 ͦ left and 36.06 ͦ right. 

Figure 1.b illustrates the digital elevation model of the study area showing the elevation and steep areas below and 

above sea level in m. 

 

Figure 1: (a) The study location, Dead Sea of Jordan and (b) digital elevation model of the study area 

Figure 2.a demonstrates the satellite view of the study area with a river network showing the direction of Wadis 

and the division of the Dead Sea into two strikingly basins. Figure 2. b shows the land cover and land use 

classifications within the location of study including Dead Sea water, artificial evaporation bonds in the south, 

neighbouring dams, urban zones, vegetation cover, and the undeveloped areas indicated bare soils and rocks.  

Figure 2. c exhibits the isohyets of the Dead Sea basin of average long-term daily rainfall in mm during (1938-

2021), the data points (CD0001, CD0003, etc.) are presenting the weather stations for recording the amount of 

rainfall in mm within the basin and nearby sub-catchments. 
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(a)                                                       (b)                                               (c) 

Figure 2: (a) satellite view of the study area. (b) land cover and land use classifications. (c) Isohyets of the basin of average 
long-term daily rainfall (mm) with marked stations ID. 

2. MATERIALS AND METHODS 

The complexity of the problem at hand is influenced by regional elements such as geological characteristics, 

climatic variations, and others. The introduction and use of the SARIMA model, a strong statistical method 

renowned for its efficiency in time-series analysis, is at the heart of this investigation. The chapter digs deep into the 

workings of the SARIMA model, describing its elements and forecasting approach. The study indicates the model's 

capability for capturing temporal patterns and fluctuations in rainfall amounts through empirical analysis using actual 

data. It demonstrates how the SARIMA model may be adjusted to consider the unique features of the Dead Sea 

basin, providing a tool for more precise and localized precipitation predictions. The chapter also emphasizes the 

wider effects of accurate rainfall forecasting for the Dead Sea region. Proactive water resource management is 

made possible by accurate forecasts, which support agricultural planning and infrastructure development. 

Time series analysis (TSA) is a statistical and computational technique to examine and evaluate data points 

gathered over a succession of equally spaced time intervals. The purposes of TSA are to get useful insights, 

generate predictions, and comprehend variations of historical data, it requires tracking the patterns, trends, and 

behaviors within a collection across time [9]. In many disciplines, such as economics, finance, environmental 

science, engineering, and the social sciences, measurements are made at regular intervals, such as hourly, daily, 

monthly, or yearly. These measurements are known as time series data. By revealing the connections between 

data elements and their temporal and spatial dependencies, time series analysis enables investigators and analysts 

to draw conclusions and forecasts based on previously identified trends [10], and ARIMA and SARIMA are 

considered widely used for analyzing time series data. 

SARIMA is the seasonal ARIMA (Autoregressive Integrated Moving Average) which is used to identify patterns 

and analysis temporal and spatial data. SARIMA was built on top of the ARIMA model, especially when the data 

show clear seasonal patterns, by adding seasonal elements that accurately represent the cyclical fluctuations 

present in the time series data. The model is constructed from the following main components: Autoregressive 

which simulates the association between the current observation and multiple past observations at corresponding 

seasonal lags, differencing to account for the seasonality (nonstationary), and moving average which combines 

past forecast errors at seasonal lags to predict the current observation. Equation number 1 represents the SARIMA 

and the required parameters [11]. 
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where  = AR (Autoregression non-seasonal,  = I (differencing non-seasonal,  = MA (Moving Average non 

seasonal),  = AR (Autoregression non-seasonal,  = I (differencing seasonal),  = MA (Moving Average 

seasonal), S = time length of the seasonal pattern such as daily or monthly,  and  =non seasonal coefficient 

value,  and  = seasonal coefficient value. 

AR non-seasonal:                                                                       (2) 

MA non-seasonal:                                                                        (3) 

Seasonal AR:                                                                        (4) 

Seasonal MA:                                                                        (5) 

The use of SARIMA model in the field of modeling climate data has been extensively studied, notably for 

patterns of precipitation. To comprehend and anticipate complicated meteorological occurrences, researchers have 

taken advantage of SARIMA's capacity to capture seasonal and temporal fluctuations. These studies have shown 

how well SARIMA captures complex rainfall patterns, which is useful for both short-term forecasting and long-term 

trend research. The use of SARIMA models is a major methodological strategy in understanding rainfall behavior as 

climate variability becomes more significant, resulting in improved meteorological insights and informed decision-

making. A study by [12] examined the future behavior of monthly average rainfall and temperature in South Asian 

countries. The study found that climate change has occurred for both rainfall and temperature in these countries 

and that the SARIMA model can be used to forecast both rainfall and temperature. They utilized climate historical 

data from January 2011 to December 2021. The study concludes with an understanding of rainfall variation which 

can be due to climate change. Another study [13] applied the SARIMA model to produce synthetic climate data to 

be used by hydrological and water resource studies and helps government agencies and policymakers to make the 

right decisions. Another experimental study [14] isfor predicting future climate parameters such as monsoon rainfall 

patterns in India (northeast). The study utilized Seasonal Autoregressive Integrated Moving Average (SARIMA) to 

forecast future precipitation and find the patterns between data. The study has found that the SARIMA ability to 

predict future rainfall patterns. 

Besides SARIMA model, the study elaborated Global Climate Model/Regional Climate Model (GCM/RCM) 

ensemble Project phase 6 the Coupled Model Intercomparison Project (CMIP6) that provides climate projections to 

investigate climate change. The ensemble-built diagnosis and evaluation characterized climate datasets[15] based 

on historical climate forcings of; greenhouse gas and aerosols emissions and concentrations, close-up land use 

images, clouds circulation, and radiative forcings data from 1850 to 2014. These datasets run the climate models 

upon their required forcing datasets besides the sensitivity of climate, impacts, and prediction purposes. Different 

possible scenarios describing the possible future drivers of climate change are included in CMIP6 called shared 

socio-economic pathways (SSPs). Every pathway suggests a distinctive earth response to force, and the way they 

explain controllers of climate extremes, available water, and evaluate impacts over land and oceans by conducting 

different experiments to simulate the future until the year 2100 [16]. The study used four GCM/RCM from the 

CMIP6 ensemble. Table 1 illustrates the details of each GCM, abbreviation, and the variant used in the study. It is 

essential to note that ssp245 is the only experiment that has been used here for assessment. The monthly mean 

precipitation (in mm/day) time series were retrieved from KNMI Explorer by getting the grid point of the Dead Sea 

(31.27942°N, 35.476586°E) for the period from 1938 to 2050. 
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The new version of the Australian Community and Earth System Simulator Coupled Model (ACCESS-CM2) 

model inputs were upgraded by tunning efforts and changes like the diffusion reduction of tropical oceans, heat 

capacity of seawater, albedo better resolution, and corrected precipitation and canopy evaporation [17]. The Hadley 

Centre Global Environment Model 3 (HADGEM3) physical climate model was developed to understand the 

contribution of the mid-warm period to future climate change. This is attributed according to the model point of view 

to the CO2 level today which is roughly equivalent to CO2 levels in Earth's history and the net loss of energy from 

the Earth System [18]. The Earth System Model version 3 EC-Earth3 is a promising model that provides an 

integrated ultra-modern tool for earth system studies. It describes ocean, sea ice, land surface, dynamical 

vegetation, atmosphere, and its composition. It is characterized by the supplementary data boundary exchange with 

different earth components [19]. NASA Goddard Institute for Space Studies (GISS) Earth System ModelE2.1 is 

more conscious of GHG and less warm compared to its version in CMIP5 which is attributed to higher longwave in 

the simulations which in turn forced climate trends. It also contributes to simulating the drawdown of aquifers for 

irrigation uses as well as the detection of sea levels [20]. 

Table 1. Details of each GCM, abbreviation, and variant. 

CMIP6 

model 
Institution 

Variant 

label 

Atmospheric 

lat/lon grid 

(  ͦ) 

Forcing Notes 

ACCESS-

CM2 

CSIRO-

ARCCSS 

Australia 

r1i1p1f1 1.25 x 1.87 

GHG Greenhouse gases 

Oz 
Troposphere and stratosphere 

Ozone 

SA Sulfate aerosols 

SI Solar irradiance 

VI Volcanic aerosols 

BC Black carbon 

OC Organic carbon 

HADGEM

3-GC31-LL 

UK Met Office 

Hadley Center -

UK 

r1i1p1f3 1.25 x 1.874 

All forcing 

simulation of 

the recent 

past 

All above forcing including land 

use change, natural forcing, dust, 

mineral dust, and sea salt 

EC-

Earth3-Veg 

European 

Research 

Consortium EC-

Earth -ESM 

r3i1p1f1 0.7 x 0.7 

GHG 

Insolation 

Stratospheric Ozone and aerosols 

Land use changes 

GISS-E2-

1-G-p3 

NASA-GISS 

NASA Goddard 

Institute for Space 

Studies 

USA 

r1i1p3f1 2.0 x 2.5 

GHG and Aerosols concentration 

Volcanic and orbital forcings 

Surface albedo changes and solar irradiance 

Deforestation 

2.1 The Dataset 

The dataset employed for the prediction of future rainfall encompasses a comprehensive compilation of 

meteorological observations sourced from the Jordan Water Authority (Ministry of Water and Irrigation). Spanning a 

temporal domain extending from the year 1938 to 2022, this dataset encompasses a substantial chronicle of daily 

rainfall measurements, quantified in millimeters (mm). The dataset's origin from an authoritative water management 

entity lends a high degree of credibility to the data's accuracy and reliability. Over this extensive period, the dataset 

embodies a rich repository of temporal rainfall dynamics, encapsulating both short-term fluctuations and long-term 

trends. Its inclusion of daily measurements provides a granular perspective, facilitating a good analysis of 

meteorological patterns at an acceptable temporal resolution. The temporal scope of the dataset encapsulates a 

holistic view of rainfall behavior within the region over nearly nine decades. This dataset, encouraged by its 

authoritative source and extensive temporal range, constitutes a robust foundation for the development and 

validation of predictive models aimed at forecasting future rainfall trends with enhanced precision and contextual 

insight. Figure 3 shows the rainfall distribution in the study area for the period from 1938 to 2022 (mean daily mm). 
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Figure 3: Rainfall over time for the study area for the period from 1938 to 2022 in mean daily mm. 

2.2 Preprocessing Phase  

The preparation process of the utilized dataset involved a meticulous sequence of procedures to ensure its 

integrity, consistency, and suitability for subsequent analysis. Initially, the dataset was integrated from two distinct 

sheets: the first sheet documented daily rainfall measurements spanning from 1938 to 2018, while the second sheet 

encompassed data from 2019 to 2022. Notably, we addressed the issue of missing values, denoted as -999, by 

systematically excluding records afflicted by such values. This approach was warranted due to potential sources of 

missingness, including equipment malfunction or unavailability of data during specific intervals. Furthermore, the 

date parameter underwent a transformation, converting it into the date and time format to enhance temporal 

precision. 

To capture seasonal variations, the rainfall data was organized into quarters, aligning with meteorological 

seasons. Specifically, the data was grouped into four quarters: Quarter One (March to May), Quarter Two (June to 

August), Quarter Three (September to November), and Quarter Four (December to February). Instances, where a 

quarter lacked recorded data, were treated as instances of zero rainfall, reflecting an assumption that no 

measurable precipitation occurred during those periods. 

For the purpose of model development and evaluation, the dataset was divided temporally into distinct training 

and testing subsets. The training subset encompassed the interval from 1938 to 2010, providing a substantial 

historical context for model calibration. On the contrary, the testing subset comprised data from 2011 to 2022, 

facilitating rigorous model validation against more recent observations. This partitioning ensured that models were 

rigorously assessed against unseen data, enhancing their generalization and predictive capacity. 

The comprehensive preparation process, characterized by data integration, missing value handling, temporal 

conversion, and seasonal grouping indicated a systemic approach to data preparation. This dataset is prepared to 

serve as a robust foundation for the development, calibration, and validation of predictive models aimed at 

forecasting future rainfall trends. The systematic procedurals applied to dataset preparation are integral to the 

reliability and validity of subsequent analytical activities, affording researchers a robust platform for empirical 

investigations and informed decision-making in the realm of hydrological and climatic studies. 
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2.3 Modelling Phase 

The training phase of the dataset employed a Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model, a powerful time series analysis approach widely acknowledged for its ability to capture both temporal and 

seasonal patterns within data. Given the dataset's yearly nature, an ARIMA model was specifically tailored, with a 

seasonal parameter denoted as S equal to 12. The training process encompassed iterative model parameter 

estimation, utilizing historical observations to optimize the model's coefficients and seasonal adjustments. This 

iterative optimization facilitated the development of a SARIMA model that adeptly accounted for the complex 

temporal dependencies and seasonal fluctuations present in the dataset. By incorporating both temporal and 

seasonal components, the SARIMA model determined a holistic understanding of the data's dynamics, thereby 

enhancing its predictive capabilities. Table 2 shows the results summary for running the model. 

Table 2: model summary for ARIMA(1, 1, 1)x(1, 1, 1, 12) with parameters coef (Coefficient), std err (Standard Error), z-

score (z), P>|z| (P-value), lower and upper bounds of the 95% confidence 

 coef std err z P>|z| [0.025 0.975] 

ar.L1 0.102 0.078 1.309 0.19 -0.051 0.255 

ma.L1 -0.9998 2.008 -0.498 0.619 -4.935 2.935 

ar.S.L12 -0.1082 0.071 -1.521 0.128 -0.248 0.031 

ma.S.L12 -0.8984 0.06 -14.94 0 -1.016 -0.781 

sigma2 15.0047 30.002 0.5 0.617 -43.799 73.808 

3. RESULTS AND DISCUSSION 

By comparing the model's forecasts with testing observations, key performance metrics provide insights into its 

accuracy and reliability. In this context, the mean squared error (MSE) of 12.8 signifies the average magnitude of 

squared differences between observed and predicted values. A mean absolute error (MAE) of 2.3 indicates the 

average absolute discrepancy between the model's forecasts and actual observations. Additionally, the root mean 

squared error (RMSE) of 3.6 quantifies the square root of the average squared differences, reflecting the model's 

precision in capturing the variability of daily mean rainfall. These metrics collectively demonstrate SARIMA's 

proficiency in producing relatively accurate predictions, thereby establishing its viability as a predictive tool for 

capturing and interpreting intricate rainfall patterns. Figure 4 shows a comparison plot between the model prediction 

and the corresponding actual (observed) data. 
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Figure 4: Comparison plot between the model prediction and the corresponding actual (observed) data. 

In the pursuit of model validation and performance assessment, a comprehensive comparison was conducted 

between our approach and the alternative modelling methodologies. Notably, our model exhibited superior 

performance across key evaluation metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), and 

Root Mean Squared Error (RMSE) as shown in Table 3. 

Table 3: Comparison between SARIMA and alternative modelling. 

Model MSE MAE RMSE 

SARIMA 12.84593 2.34407 3.584123 

ACCESS_CM2 22.4615 2.747935 4.739356 

Earth3_Veg 38.27498 4.285327 6.186677 

GISS_E2 31.68235 3.849951 5.628708 

HadGEM3 36.25319 4.194174 6.021062 

The evaluation process included a set of validation techniques to ascertain the model's efficiency. In the context 

of MSE, which quantifies the magnitude of prediction errors, our model consistently yielded lower MSE values in 

comparison to the alternative models under consideration. Similarly, the MAE assessment indicated that our model 

achieved reduced absolute prediction errors, signifying its capacity to provide predictions closer to the actual 

observations. Moreover, the RMSE analysis affirmed our model's superiority by revealing smaller root mean 

squared errors, thereby attesting to its ability to deliver predictions with diminished overall variance. These 

consistent trends in performance metrics, across multiple evaluation criteria, highlight the robustness and efficacy of 

our model as shown in Figure 5. 
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Figure 5: Rainfall prediction comparison between all used models and the observed testing data 

 

Figure 6: Using the models to predict the amount of rainfall until 2050 for the region of study (the Dead Sea) 

In culmination, the conducted study used the models to simulate and predict rainfall patterns with a forward-

looking perspective, extending until the year 2050. By employing a rigorous methodological framework that 

encompassed the utilization of advanced forecasting models as shown in figure 6. The utilization of the models in 

forecasting rainfall amounts up to 2050 signifies a substantial contribution towards the future hydrological and 

climatic scenarios, in addition, the rainfall prediction is to inform decision-making and policy formulation to plan 

ahead and find alternative resources. 

The research focuses on evaluating the effectiveness of the SARIMA model in comparison to CMIP6 models for 

replicating actual observations within a highly vulnerable ecosystem in Jordan. The analysis is conducted under the 

SSP245 middle-of-the-road scenario, which portrays moderate challenges that the nation must address in the 

coming years to counteract and adjust to evolving climatic conditions. The primary objective of this study is to 

demonstrate the accuracy and reliability of SARIMA's predictive capabilities, achieved through a comprehensive 
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contrast with forecasts generated using climate modelling techniques. The results acquired by the SARIMA model 

compared to the actual observation demonstrate a Mean Squared Error (MSE) of 12.84593, a Mean Absolute Error 

(MAE) of 2.34407, and a Root Mean Squared Error (RMSE) of 3.584123 during this specific timeframe (2010-

2022).  

Notably, the SARIMA model outperforms the forecasts made by well-known climate models (CMIP6). ACCESS-

CM2 performed better among the alternative CMIP6 models followed by GISS-E2.  HadGEM3 and Earth-CM2 

models were slightly aligned simulations of daily precipitations. The GISS-E2 model works more effectively in the 

spatial distribution of oceanic water and implied energy imbalance leading to warming trends. GISS-E2 model 

reconsidered water loss in oceans, where the Dead Sea perceived declining surface area due to anthropogenic 

activities by rerouting its tributaries and changing climate parameters like higher temperature, lower precipitation, 

and evaporation rates. HadGEM3 is considered one of the warmest models due to its sensitivity to temperature 

response rather than its hydrological response during the control and simulation periods. Its mean precipitation is 

around 3.1 mm/day showing less change in precipitation over time (anomaly less than 0.3 mm/day). EC-Earth3-Veg 

simulated a higher temperature increase by the end of the 21st century because of higher GHG amounts in the 

atmosphere. So when interpreting this increase to new measures, careful consideration should be taken by 

continuously recorded GHG concentrations. While GISS-E2 suggested that more energy is transported to deep 

oceans allowing a smaller rise in atmospheric temperature. 

CONCLUSIONS 

This study described the prediction of daily precipitation by running SARIMA model and provides a basic 

assessment for a number of CMIP6 ensemble models’ simulations of precipitation during the baseline period and 

the near future. This study emphasized on the performance of SARIMA against CMIP6 models to simulate real 

observations in one of the most vulnerable ecosystems in Jordan under the middle road scenario ssp245 which 

reflects intermediate challenges in the near future that the country should trace for mitigation and adaptation to a 

changing climate. The research aims to show the precision and dependability of the SARIMA model's predictions by 

comparing it against projections generated by climate modeling methodologies. The assessment used well-known 

performance metrics, encompassing Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean 

Squared Error (RMSE). Furthermore, the study evaluates the predictive ability of the SARIMA model with actual 

observations spanning the timeframe from 2010 to 2022. The findings disclose an MSE of 12.84593, an MAE of 

2.34407, and an RMSE of 3.584123 during this period. Importantly, the SARIMA model demonstrates its 

dominance over notable climate models—specifically, ACCESS_CM2, Earth3_Veg, GISS_E2, and HadGEM3—

based on comprehensive performance evaluations. These results underscore the SARIMA model's robustness in 

capturing and projecting precipitation trends, not only by outperforming climate models but also by aligning 

effectively with actual observations. This research enhances the comprehension of precipitation prediction in the 

Dead Sea region and highlights the SARIMA model's potential to boost forecasting accuracy within hydrological and 

climatic inquiries. 
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