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Abstract: The paper introduces a new probability distribution, which is weighted version of the Prakaamy distribution. 
The paper explores various statistical properties of the Weighted Prakaamy (WP)distribution including probability density 
function (PDF), cumulative distribution function (CDF), moments, moment generating function, characteristics function, 
reliability analysis, ordered statistics, maximum likelihood estimation of parameters, entropies, likelihood ratiotest, and 
Bonferroni and Lorenz curves. The paper uses simulations to evaluate the performance of maximum likelihood 
estimators. The authorsapply the WP distribution to various real-life data sets from fields of engineering and medical 
science. This empirical analysis aims to evaluate the performance of the distribution in modeling and predicting real-
world phenomena. The paper suggests that WP distribution outperforms other probability distributions including 
Prakaamy distribution, Exponential distribution, Erlang Truncated Exponential distribution, Power Lindley distribution and 
Lindley distribution. 
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1. INTRODUCTION 

Weighted distributions are used in various fields, including biomedicine, reliability, ecology, and branching 
processes. They are crucial for modeling and analyzing lifetime data, especially when standard distributions are not 
suitable. Fisher introduced the concept of weighted distributions in 1934 to address ascertainment bias. Rao later 
(1965) developed this concept in a unified manner to handle situations where standard distributions were 
inadequate. Weighted distributions allow observations to be recorded according to some weighted function. They 
reduce to length-biased distributions when the weight function considers only the length of the units. The concept of 
length-bias was first introduced by Cox [1] and Zelen [11]. Lappi and Bailey [3], used weighted distributions to 
analyze the HPS diameter increment data. In fisheries, Taillie et al [9] modeled populations of fish stock using 
weights. Dey et al (2015) discussed weighted exponential distribution with its properties and different methods of 
estimation. Kilany (2016) have obtained the weighted version of lomax distribution. Recently Shanker & Shukla [7] 
discussed a new generalized size-biased, Poisson-Lindley distribution with its application to model size distribution. 
Also, Rather and Subramanian (2018) discussed the characterization and estimation of length biased weighted 
generalized uniform distribution. Rather et al (2018) obtained a new size biased Ailamujia distribution with 
applications in engineering and medical science which shows more flexibility than classical distributions. 
Subramanian and Rather [8] obtained the weighted version of exponentiated mukherjee-islam distribution with 
statistical properties. Rather and Subramanian (2018) have discussed the statistical properties and applications of 
length biased sushila distribution. Rather and Subramanian [6] discussed on weighted sushila distribution with 
properties and application which shows more flexibility then the subject distribution. Recently, Ganaie, Rajagopalan 
and Rather (2019), discussed the weighted Aradhana distribution properties and applications. Rather and Ozel 
(2020), discussed on weighted power lindley distribution with applications on the life time data which shows more 
flexibility than the classical distribution.  Overall, weighted distributions provide a flexible framework for handling 
data that does not conform to standard probability distributions, making them valuable tools in various scientific 
disciplines. Researchers have explored these distributions and their properties extensively, contributing to a deeper 
understanding of their applications. Various weighted probability models have been developed. Some examples 
include the weighted exponential distribution, weighted Lomax distribution, weighted modified Weibull distribution, 
length-biased weighted generalized uniform distribution, and size-biased Ailamujia distribution. 
 
2. WEIGHTED PRAKAAMY DISTRIBUTION 
 

The probability density function (PDF) of Prakaamy distribution is given by  
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The corresponding cumulative distribution function (CDF) of Prakaamy distribution is  
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Now,Suppose Y is a non-negative random variable with PDF );( yg . Let w(y)= yc be the non-negative weight 

function, then the PDF of Weighted Prakaamy distribution is given 
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Substituting equation (01) and (04) in (03) we get 
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The corresponding CDF of Weighted Prakaamy distribution is 
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3. MOMENTS OF WEIGHTED PRAKAAMY DISTRIBUTION 

Let Y denotes the random variable following Weighted Prakaamy distribution with parameters c and θ, then the rth 

raw moment about origin of the Weighted Prakaamy distribution is given by 
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4. MOMENT GENERATING FUNCTION AND CHARACTERISTICS FUNCTION 

The moment generating function of Weighted Prakaamy distribution is given by 
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After simplification we get 
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Also, the characteristics function of Weighted Prakaamy distribution is given by 
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5. THE RELIABILITY ANALYSIS 

In this section, we have obtained the survival function, hazard rate and Reverse hazard rate function of the 
proposed Weighted Prakaamy distribution. 

5.1. Survival Function 

The survival function is defined as the probability that a system survives beyond a specified time. It is also known 
as reliability function and can be computed as complement of the cumulative distribution function of the model. The 
reliability function or the survival function of Weighted Prakaamy distribution can be computed as 
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5.2. Hazard Function 

The hazard function, also known as hazard rate, is defined as the instantaneous failure rate or force of mortality 

and is given by 
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5.3. Reverse Hazard Function 

The reverse hazard function of Weighted Prakaamy distribution is given by 
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Graphical representation of pdf plot is shown in Figure 1 and Figure 2, Figure3 and Figure 4 shows cdf plot, Figure 

5 and Figure 6 shows the survival function and Figure 7 and Figure 8 shows the hazard rate. 

 

Figure 1: PDF plot of Weighted Prakaamy distribution 

 

Figure 2: PDF plot of Weighted Prakaamy distribution 
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Figure 3: CDF plot of Weighted Prakaamy distribution 

 

Figure 4: CDF plot of Weighted Prakaamy distribution 

 

 

Figure 5: Plot of survival function of Weighted Prakaamy 

distribution 

 

Figure 6: Plot of survival function of Weighted Prakaamy 

distribution 
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Figure 7: Plot of hazard function of Weighted Prakaamy 

distribution 

 

Figure 8: Plot of hazard function of Weighted Prakaamy 

distribution 

6. Ordered Statistics 

Let Y1 , Y2  , Y3  , Y4 , … , Yn be a random sample of size ‘n’ drawn from a given population following Weighted 

Prakaamy distribution . Then the ordered statistics associated with the given sample is given by 

Y(1) ≤ Y(2 )≤ Y(3) ≤… ≤Y(n) 

Where, 

Y(1)= min( Y1,Y2,…,Yn ) 

And  

Y(n)= max( Y1,Y2,……Yn) 

Now, the PDF of rth ordered statistics Y(r) is 
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Therefore, the PDF of highest ordered statistics Y(n) is 
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And the PDF of first ordered statistics Y(1)is 
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7. ESTIMATION

 

Maximum likelihood estimation method is one of the most useful method for estimating the different parameters of 
the distribution. Let Y1 , Y2  , Y3  , Y4 , … , Ynbe the random sample of size n drawn from the Weighted Prakaamy 
distribution. Then the likelihood function of the given random sample is given by   
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Differentiating equation (07) partially with respect to   and equating to zero we get we get 
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Differentiating equation (07) partially with respect to c and equating to zero we get 
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By solving equation (08) and (09) we get the maximum likelihood estimators of the parameters of Weighted 

Prakaamy distribution. Since it is very complicated to estimate θandc, so we use mathematica or Newton Raphson 

method. 

8. ENTROPY 

The concept of entropy is a fundamental and versatile concept with applications in various fields, including 

probability and statistics, physics, communication theory, and economics. Entropy measures play a crucial role in 

quantifying the diversity, uncertainty, and randomness within systems. In particular, the entropy of a random 

variable Y serves as a metric for assessing the degree of uncertainty or variation associated with it. 

8.1. Renyi entropy 

The Rényi entropy is indeed significant in the fields of ecology and statistics, particularly as an index of diversity. It 

was introduced by Alfréd Rényi in 1957. 

The Renyi entropy is defined as  
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After simplification we get 
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8.2. Tsallis Entropy 

Tsallis introduced a mathematical expression for Tsallis entropy in 1988 and is particularly useful for systems that 
exhibit non-extensive properties, such as long-range interactions, self-organization, and non-Gaussian statistics. 

The Tsallis entropy is given by
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After simplification we get 
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9. LIKELIHOOD RATIO TEST 

Let Y1 , Y2  , Y3  , Y4 , … , Yn be a random sample of size ‘n’ drawn from a given population following Weighted 

Prakaamy distribution . 
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In order to test whether the random sample of size n comes from the Prakaamy distribution or Weighted 

Prakaamy distribution, then following the likelihood ratio test statistic is used 
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We reject the null hypothesis if the likelihood ratio is small i.e., 

kLR   

Where k is a constant such that 
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10. BONFERRONI AND LORENZ CURVES 

The Bonferroni and Lorenz curves are versatile tools used in economics, statistics, reliability, medicine, insurance, 

and demography. The Bonferroni correction is employed to control Type I errors in statistical analysis. Lorenz 

curves help visualize income and wealth distribution and are vital for assessing social inequalities in various fields. 

These curves provide valuable insights, making them essential in decision-making across a range of disciplines. 

10.1. Bonferroni Curves 

The Bonferroni curve is given by 
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After simplification we get 
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10.2. Lorenz Curves 

The Lorenz curve is given by 
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11. SIMULATION 

Simulations provide a comprehensive and versatile approach to understand the behavior of maximum likelihood 

estimators across different sample sizes. This knowledge can guide better dicision making, minimize risks, and 
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improve the reliability and efficiency of statistical analysis in various fields such as finance, healthcare, engineering 

etc. Simulations enable us to anticipate how MLEs will behave under a wide array of sample sizes, even those not 

easily attainable in practice. This predictive capacity assists in understanding how the estimator’s bias, variance and 

efficiency will change as sample size fluctuates. Simulations can help in identifying the optimal sample size for an 

MLE application.

 

We have studied the performance of ML estimators for different sample sizes (n= 25, 50, 75, 100, 

200, 300). The inverse CDF technique was employed for data simulation in the R-software and the process was 

repeated 700 times to calculate bias, variance and mean squared error (MSE). From table 1, it is noted that for 

different values of parameters with different sample sizes of Weighted Prakaamy distribution, the decreasing trend 

has been observed in variance, bias and MSE as the sample size increases. The decreasing bias suggests that the 

ML estimation tend to approach the true parameter values as the sample size increases. The decreasing variance 

implies that the estimators become more precise and stable with larger sample sizes, as they exhibit less variability 

across repeated simulations. Further, Figure 9, Figure 10, Figure 11,Figure 12, Figure 13, and Figure 14   shows 

the histogram of simulation on different values of the parameters with different the sample size. Consequently, MSE 

which combines the bias and variance also decreases as the sample size an increase, indicating improved overall 

estimation accuracy.This result indicates that the performance of ML estimators improves consistently with larger 

sample sizes in Weighted Prakaamy distribution. 

Table 1: Estimation of Bias, Variance and MSE for different sample sizes

 

n θ=3 c=2 

Bias Variance MSE Bias Variance MSE 

25 0.8162067 0.4970276 1.163221 1.92244 2.731128 6.426904 

50 0.5163385 0.1357713 0.4023768 1.241929 1.12538 2.667767 

75 0.2770153 0.1298997 0.2066372 0.7043924 0.8085554 1.304724 

100 0.1135018 0.07648831 0.08937097 0.3129216 0.2885902 0.3865101 

200 0.0778941 0.07055497 0.07662246 0.1551423 0.2694947 0.2935638 

300 0.006648184 0.01436286 0.01440706 0.002428027 0.09489351 0.0948994 

 θ=7 c=5 

Bias Variance MSE Bias Variance MSE 

25 1.558031 3.038257 5.465718 1.93421 4.083858 7.825028 

50 0.7976739 1.632195 2.268479 1.058869 2.648107 3.769311 

75 0.5962892 0.8862764 1.241837 0.9493708 1.54787 2.449175 

100 0.2388727 0.3003692 0.3574294 0.2393312 0.4331804 0.4904598 

200 0.04890744 0.2667191 0.2691111 0.07504574 0.3539969 0.3596288 

300 -0.00287561 0.1361568 0.136165 -0.0572108 0.1670096 0.1702826 

 θ=4 c=9 

Bias Variance MSE Bias Variance MSE 
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25 0.6303604 0.8315047 1.228859 2.075204 10.28468 14.59115 

50 0.3254438 0.5643284 0.6702421 1.187516 8.580748 9.990943 

75 0.2803734 0.5540099 0.6326191 1.101834 6.80588 8.019918 

100 0.2355682 0.3986065 0.4540988 0.7299452 4.902112 5.434932 

200 0.08571555 0.1677978 0.1751449 0.3366784 2.377541 2.490893 

300 0.002031912 0.1086348 0.1086389 -0.02944885 1.253967 1.254834 

 θ=6 c=11 

Bias Variance MSE Bias Variance MSE 

25 2.171407 2.735779 7.450785 5.966887 21.64485 57.24859 

50 0.6245353 1.02498 1.415025 2.187509 9.07805 13.86324 

75 0.4367386 1.038073 1.228814 1.23183 7.104936 8.62234 

100 0.4492844 0.5627282 0.7645847 1.117345 3.47835 4.72681 

200 0.3041986 0.3089941 0.4015309 0.943277 2.396857 3.286629 

300 0.1114169 0.1137174 0.1261311 0.2377907 0.8707666 0.927311 

 

 

Figure 9: Histogram of simulation when n=25, 

θ= 3, c=2 

 

Figure 10: Histogram of simulation when n=75, 

θ= 7, c=5 
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Figure 11: Histogram of simulation when n=100, θ= 4, 

c=9 

 

Figure 12: Histogram of  simulation when  n=300, θ= 4, 

c=9 

 

Figure 13: Histogram of simulation when n=50, θ= 6, 

c=11 

 

Figure 14: Histogram of simulation when n=200, θ= 6, 

c=11

 

12. APPLICATION 

In this section, we use and analyse the two real-life data sets to show that the Weighted Prakaamy distribution 

fits better than the Prakaamy distribution, Exponential distribution, Erlang Truncated Exponential distribution, Power 

Lindley distribution and Lindley distribution. The following two data sets are provided below as 
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Data set 1: The data set is the strength data of glass of the aircraft window reported by Fuller, et al. [14] and are 

given as 

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 

31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.431                                      

Data set 2: Relief in minute’s analgesic data of 20 patients has been reported by Gross and Clark in (1975). 

1.1,  1.4,  1.3,  1.7,  1.9,  1.8,  1.6,  2.2,  1.7,  2.7,  4.1,  1.8,  1.5, 1.2,  

1.4,  3.0,  1.7,  2.3,  1.6,  2.0 

Estimates of the unknown parameters are carried out in R software along with calculation of model comparison 

criterion values like AIC, AICC, BIC and -2logLvalues. In order to compare the two models, the AIC (Akaike 

information criterion), AICC (corrected Akaike information criterion) and BIC (Bayesian information criterion) are 

used. The better distribution corresponds to lesser AIC, AICC and BIC values. The generic formulas for calculation 

of AIC, AICC and BIC are 

LkAIC log22 −= ;  
1

)1(2

−−

+
+=

kn

kk
AICAICC  and  LnkBIC log2log −=  

where k is the number of parameters in the statistical model, n is the sample size and –LogL is the maximized value 
of the log-likelihood function under the considered model. Table 2 shows the parameter estimation and standard 
error values. Table 3 shows the performance of the distributions. Figue 15 shows Fitting density curves of data set 1 
based on glass strength of air craft windows and Figure 16 Fitting density curves of data set 2 based on relief in 
minutes of analgesic patients. 
 
 

Table 2: Shows values of ML estimates, and corresponding standard errors 

 
Data Set Distribution Parameter MLE Standard Error 

 
 
 
 

1 

Weighted Prakaamy θ 0.6140409 0.1566656 

c 12.9204417 4.7637234 

Prakaamy θ 0.19472415 0.01427744 

Exponential θ 0.032459933 0.005824437 

Erlang truncated 
Exponential 

β 0.1421420 2.4169678 

θ 0.2591881 5.0312330 

Power Lindley β 0.1421420 2.4169678 

θ 0.2591881 5.0312330 

Lindley θ 0.062989929 0.008004739 

 
 
 
 

2 

Weighted Prakaamy θ 6.506044 1.556488 

c 6.926375 2.743594 

Prakaamy θ 2.273508 0.161589 

Exponential θ 0.5263164 0.1176875 

Erlang truncated 
Exponential 

β 0.8244015 74.8236370 

θ 1.0172774 160.2527526 

Power Lindley β 2.2529461 0.3067604 

θ 0.3444791 0.0996840 

Lindley θ 0.8161188 0.1360929 
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Table 3: Shows values of 2logL, AIC, BIC, and AICC 
Data Set Distribution -2logL AIC BIC AICC 

 
 
 

1 

Weighted Prakaamy 208.2532 212.2532 215.1211 212.6817714 

Prakaamy 223.0869 225.0869 226.5209 225.224831 

Exponential 274.5321 276.5321 277.9661 276.670031 

Erlang truncated 
Exponential 

274.5321 278.5321 281.4001 278.9606714 

Power Lindley 274.5321 278.5321 281.4001 278.9606714 

Lindley 253.9925 255.9925 257.4265 256.130431 

 
 
 

2 

Weighted Prakaamy 37.63999 41.63999 43.63146 42.34587235 

Prakaamy 61.43961 63.43961 64.43534 63.66183222 

Exponential 65.67416 67.67416 68.66989 67.89638222 

Erlang truncated 
Exponential 

65.67416 69.67416 71.66562 70.38004235 

Power Lindley 40.86396 44.86396 46.85543 45.56984235 

Lindley 60.4991 62.4991 63.49483 62.72132222 

 
 

 

Glass strength of the air craft window 

Figure 15: Fitting density curves of data set 1 based 

on glass strength of air craft windows

 

 

Relief in minutes of analgesic patients 

Figure 16: Fitting density curves of data set 2 based on 

relief in minutes of analgesic patients 

From Table 3, it has been observed that the Weighted Prakaamy distribution has smaller AIC, AICC, -LogL and 

BIC values as compared to the Prakaamy distribution, Exponential distribution, Erlang Truncated Exponential 

distribution, Power Lindley distribution and Lindley distribution, which clearly indicates that Weighted Prakaamy 

distribution fits better than Prakaamy distribution, Exponential distribution, Erlang Truncated Exponential 

distribution, Power Lindley distribution and Lindley distribution. Hence, we can conclude that the Weighted 

Prakaamy distribution leads to a better fit than the above other distributions. 

CONCLUSIONS 

In the present study we have studied a Weighted Prakaamy distribution as a new generalization of Prakaamy 

distribution. The new distribution is generated by using the weighting technique and taking the one parameter 

Prakaamy distribution as the base distribution. Some mathematical properties along with reliability measures are 

discussed. The hazard rate function and reliability behaviour of the Weighted Prakaamy distribution exhibits that 

subject distribution can be used as a lifetime model. Finally real life data has been analysed for coimparison 
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purpose, and it has been analysed that weighted prakaamy distribution shows better performance than Prakaamy, 

Exponential, Erlang truncated Exponential, Power Lindley and Lindley distributions. 
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