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1. INTRODUCTION 

Weighted distributions are a statistical concept used to model situations where recorded observations cannot be 

assumed to be randomly sampled from the actual underlying distribution. This can occur for various reasons, such 

as damaged or incomplete data, or when events are observed in a non-random or non-observable manner. In such 

cases, the resulting values may not accurately reflect the true distribution, and units or events may not have equal 

chances of occurrence as they would if they followed the exact distribution. Weighted distributions are applied in 

various research areas, including biomedicine, reliability analysis, ecology, and branching processes. The concept of 

weighted distributions was first introduced by Sir Ronald A. Fisher in 1934 to address the issue of ascertainment bias. 

Later, C.R. Rao, a renowned statistician, developed this concept in a more unified manner. Rao's work involved 

modelling statistical data when standard distributions were not suitable due to unequal probabilities in recording 

observations. Weighted models were then formulated to account for this bias. Weighted distributions can take different 

forms depending on the nature of the bias. For instance, a weighted distribution reduces to a length-biased distribution 

when the weight function considers only the length or size of the units. The concept of length-biased sampling was 

introduced by David R. Cox in 1969 and Marvin Zelen in 1974. More generally, when the sampling mechanism selects 

units with a probability proportional to some measure of the unit size, the resulting distribution is called size-biased. 

There are various good sources which provide the detailed description of weighted distributions. Different authors 

have reviewed and studied the various weighted probability models and illustrated their applications in different fields. 

Weighted distributions are applied in various research areas related to reliability, biomedicine, ecology and branching 

processes. Afaq et al (2016) have obtained the length biased weighted version of lomax distribution with properties 

and applications. Reyad et al. (2017), obtained the length biased weighted frechet distribution with properties and 

estimation.  Khan et al. (2018) discussed the weighted modified Weibull distribution. Rather et al (2018) obtained a 

new size biased Ailamujia distribution with applications in engineering and medical science which shows more 

flexibility than classical distributions. Subramanian and Rather (2018) studied the weighted exponentiated Mukherjee-

islam distribution and its statistical properties. Mudasir and Ahmad (2018), discussed the characterization and 

estimation of length biased Nakagami distribution. Modi and Gill (2015), discussed the length biased weighted 

Maxwell distribution. Dey et al (2015) discussed weighted exponential distribution with its properties and different 

methods of estimation. Kilany (2016) have obtained the weighted version of lomax distribution. Recently, Rather and 

Subramanian (2019), discussed the length biased erlang truncated exponential distribution with applications to real 

life data which shows more flexibility than classical distributions. Shenbagaraja et al. (2019), discussed on length 

biased Garima distribution which shows more flexibility than the classical distributions. Mathew and Chesneau (2020), 

discussed on Marshall-olkin length biased Maxwell distribution and its applications. 
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2. LENGTH BIASED PRAKAAMY (LBP) DISTRIBUTION 
 
The probability density function (PDF) of Prakaamy distribution is given by  

( ) )01(0,0;1
120

);( 5

5

6

+
+

= − 



  yeyyg y  

The corresponding cumulative distribution function (CDF) of Prakaamy distribution is  
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Let Y be a non-negative random variable with PDF g(y; θ), then the PDF of the weighted random variable Yw is called 

the weighted distribution which is given by 
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weight function w(y) gave different weighted distributions. Consequently, for yyw =)( the resulting distribution is called 

length-biased distribution with the PDF given by 
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After simplification we get 
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Substituting equation (01) and (04) in (03) we get 
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The corresponding CDF of Length-biased Prakaamy distribution is 
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After simplification we get 
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Graphical representation of PDF and CDF plots of length-biased Prakaamy distribution is shown in Figure 1 and 

Figure 2 respectively as below: 

Figure 1: PDF plot of LBP distribution

 

 

 

Figure 2: CDF plot of LBP distribution

 

 

3. MOMENTS OF LENGTH-BIASED PRAKAAMY DISTRIBUTION 

Let Y denotes the random variable following Length-biased Prakaamy distribution with parameters θ, then the rth raw 

moment about origin of the Length-biased Prakaamydistribution is given by 
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After simplification we get 
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4. MOMENT GENERATING FUNCTION AND CHARACTERISTICS FUNCTION  

The moment generating function of Length-biased Prakaamy distribution is given by 
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After simplification we get 
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Also, the characteristics function of Length-biased Prakaamy distribution is given by 
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5. THE RELIABILITY ANALYSIS 

In this section, we have obtained the survival function, hazard rate and Reverse hazard rate function of the 

proposed Length-biased Prakaamy distribution. 

5.1. Survival function 

The survival function, also known as the reliability function, is a fundamental concept in probability theory and 

statistics, especially in the context of survival analysis. It is used to model and analyse the time to an event, such as 

the failure of a system, the lifespan of a product, or the time until a patient's recovery or death. The survival function 

provides valuable information about the likelihood that a system or entity will continue to operate or exist beyond a 

specified time. The reliability function or the survival function of Length-biased Prakaamy distribution can be computed 

as 
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5.2. Hazard function 

The hazard function, also known as the hazard rate, is a crucial concept in survival analysis and reliability 

engineering. It represents the instantaneous failure rate or the force of mortality, which is the likelihood of an event 

(such as system failure, death, or any other event of interest) occurring at a specific point in time, given that it has not 

happened up to that time. The hazard function of Length-biased Prakaamy distribution is given by 
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Graphical representation of survival function and hazard function plots of length-biased Prakaamy distribution is 

shown in Figure 3 and Figure 4 respectively as below: 

 Figure 3: Survival function plot of LBP distribution

 

 Figure 4: Hazard function plot of LBP distribution

 

5.3. Reverse Hazard Function 

The reverse hazard function of Length-biased Prakaamy distribution is given by 
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6. ORDERED STATISTICS 

Order statistics are a set of values obtained by arranging a sample of random variables in ascending order. They 

provide insights into the distribution of the sample, including the minimum and maximum values, as well as percentiles 

like the median. Order statistics are essential in statistical analysis and non-parametric statistics. Let Y1 , Y2  , Y3  , Y4 

, … , Yn be a random sample of size ‘n’ drawn from a given population following Length-biased Prakaamy distribution. 

Then the ordered statistics associated with the given sample is given by 

Y(1) ≤ Y(2 )≤ Y(3) ≤… ≤Y(n) 

Where, 

Y(1)= min ( Y1,Y2,…,Yn ) 

And  

Y(n)= max (Y1,Y2,……Yn) 
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Now, the PDF of rth ordered statistics Y(r) is 
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Therefore, the PDF of highest ordered statistics Y(n) is 
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And the PDF of first ordered statisticsY(1)is 
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7. ESTIMATION

 

Maximum Likelihood Estimation (MLE) is a powerful statistical technique for estimating distribution parameters. It 

involves finding parameter values that maximize the likelihood of observed data given a specific statistical model. 

MLE offers consistent, asymptotically unbiased, and efficient estimates, making it a widely used tool in fields like 

economics, biology, and engineering. Let Y1 , Y2  , Y3  , Y4 , … , Ynbe the random sample of size n drawn from the 

Length-biased Prakaamy distribution. Then the likelihood function of the given random sample is given by   
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Applying log on both sides, we get 
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Differentiating equation (07) partially with respect to   and equating to zero we get we get 
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By solving equation (08) we get the maximum likelihood estimator of the parameter of Length-biased Prakaamy 

distribution. Since it is very complicated to estimate θ so we use Mathematica or Newton Raphson method. 

8. ENTROPY 

Entropy, a versatile concept, finds applications in multiple domains. It quantifies disorder, uncertainty, and diversity 

in systems. In statistics, it gauges the unpredictability of random variables. In economics, it aids the analysis of market 

dynamics. Entropy serves as a unifying measure for understanding information and randomness across these diverse 

fields. 

8.1. Renyi Entropy 

The Rényi entropy is a vital concept in ecology and statistics, often serving as a diversity index. Introduced by 

Alfréd Rényi in 1957, it provides a versatile way to quantify the diversity or heterogeneity of a dataset. By adjusting a 

parameter called the order, it can capture different aspects of diversity, making it a valuable tool for studying 

ecosystems, populations, and probability distributions in various scientific disciplines. The Renyi entropy is defined 

as  















−
= 



dyyfe 


 ));((log
1

1
)(

0  
























+

+

−
= 

 −











0

5

57

)!6(

)1(
log

1

1
)(

yeyy
e

 

( )













+









+−
= −



 dyeyye y










0

5

5

7

1
)!6(

log
1

1
)(

 

( )



























+









+−
= 



−

0

5

5

7

1
)!6(

log
1

1
)( dyeyye y










 

After simplification we get 
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8.2. Tsallis entropy 

Tsallis entropy, introduced by Constantino Tsallis in 1988, is a mathematical expression used to characterize 

systems with non-extensive properties. It is particularly valuable for systems displaying features like long-range 

interactions, self-organization, and non-Gaussian statistics. Tsallis entropy generalizes the traditional Boltzmann-

Gibbs entropy and provides a broader framework for understanding complex systems that do not adhere to standard 

statistical mechanics. It has applications in fields such as physics, astrophysics, and economics where conventional 

entropy measures may not capture the system's behaviour adequately. 
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The Tsallis entropy is given by
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After simplification we get 
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9. LIKELIHOOD RATIO TEST 

Let Y1 , Y2  , Y3  , Y4 , … , Yn be a random sample of size ‘n’ drawn from a given population following Length-biased 

Prakaamy distribution . 
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In order to test whether the random sample of size n comes from the Prakaamy distribution or Length-biased 

Prakaamy distribution, then following the likelihood ratio test statistic is used 
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We reject the null hypothesis if the likelihood ratio is small i.e., 

kLR   

Where k is a constant such that 
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10. BONFERRONI AND LORENZ CURVES 

Both the Bonferroni and Lorenz curves are highly versatile tools applied in diverse fields, including economics, 

statistics, reliability, medicine, insurance, and demography. The Bonferroni correction is essential for managing Type 

I errors in statistical analysis, ensuring rigorous hypothesis testing. Lorenz curves, on the other hand, offer a visual 

representation of income and wealth disparities, making them crucial for assessing social inequalities and guiding 

policy decisions. These tools play a pivotal role in various disciplines, aiding in informed decision-making and data 

analysis. 

10.1. Bonferroni Curves 

The Bonferroni curve is given by 
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After simplification we get 
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10.2. Lorenz Curves 

The Lorenz curve is given by 
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11. SIMULATION 

Simulations are a powerful tool in statistics and data analysis, and they indeed offer numerous benefits when it 

comes to understanding the behaviour of maximum likelihood estimators (MLEs) across different sample sizes.

 

Simulations are versatile and can be applied to a wide range of statistical problems. They are not limited to a specific 

field and can be adapted to various areas such as finance, healthcare, engineering, and more. This adaptability makes 
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simulations a valuable tool for researchers and decision-makers across different industries.

 

Simulations enable you 

to test the efficiency and reliability of MLEs under different conditions. This information can be critical when choosing 

appropriate statistical methods for a particular dataset. It ensures that the chosen estimator performs well and 

provides reliable results, which is especially important in fields like healthcare and finance where decisions can have 

significant consequences.

 

Simulations can help you understand how the bias, variance, and efficiency of MLEs 

change as sample size varies. This information is crucial for selecting an appropriate sample size for your specific 

application. For instance, it can help you strike a balance between precision (low bias and variance) and cost 

(collecting larger samples). The inverse CDF technique was employed for data simulation in the R-software and the 

process was repeated 600 times to calculate bias, variance and mean squared error (MSE). From table 1, it is noted 

that for different values of parameters with different sample sizes of Length-biased Prakaamy distribution, the 

decreasing trend has been observed in variance, bias and MSE as the sample size increases. The decreasing bias 

suggests that the ML estimation tend to approach the true parameter values as the sample size increases. The 

decreasing variance implies that the estimators become more precise and stable with larger sample sizes, as they 

exhibit less variability across repeated simulations. Further, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, and 

Figure 10 shows the histogram of simulation on different values of the parameters with different the sample size. 

Consequently, MSE which combines the bias and variance also decreases as the sample size an increase, indicating 

improved overall estimation accuracy. This result indicates that the performance of ML estimators improves 

consistently with larger sample sizes in Length-biased Prakaamy distribution. 

Table 1: Estimation of Bias, Variance and MSE for different sample sizes

 n θ=20 θ=15 

Bias Variance MSE Bias Variance MSE 

25 1.113678 4.96875 6.209029 1.734205 7.197125 10.20459 

50 0.4153201 2.525757 2.698248 0.9717218 4.331348 5.275591 

75 0.3339129 1.637916 1.749413 0.517613 1.359283 1.627206 

100 0.08548331 1.523457 1.530764 0.3129216 0.2885902 0.3865101 

200 -0.05538118 0.890632 0.8936991 0.09836069 0.1811009 0.1907758 

300 -0.2155352 0.772372 0.8188274 -0.1573127 0.1528819 0.1776292 

 θ=11 θ=9 

Bias Variance MSE Bias Variance MSE 

25 1.191601 1.341698 2.76161 0.887049 1.815196 2.602052 

50 0.6033993 0.9848901 1.348981 0.7722598 0.9976571 1.594042 

75 0.2774067 0.4507087 0.5276632 0.4371463 0.4044518 0.5955487 

100 0.3545229 0.3520333 0.4777198 0.1716451 0.3031752 0.3326372 

200 0.03971542 0.2354966 0.2370739 -0.06880265 0.1168963 0.1216301 

300 -0.05804382 0.192803 0.1961721 -0.1438987 0.01828421 0.03899105 

 θ=5 θ=2 

Bias Variance MSE Bias Variance MSE 

25 0.261432 0.298728 0.3670747 0.1292878 0.01568528 0.0324006 
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50 0.3254438 0.5643284 0.6702421 0.01274988 0.00742706 0.00758962 

75 0.2803734 0.5540099 0.6326191 -0.01453137 0.006171473 0.006382634 

100 0.2355682 0.3986065 0.4540988 -0.02551115 0.0050785 0.005092088 

200 -0.04067243 0.02103617 0.02374435 -0.03686144 0.002977231 0.003628049 

300 -0.05204017 0.01055605 0.01221029 -0.00727495 0.001311165 0.00136409 

 

Figure 5: Histogram of simulation when n=25, 

θ= 20 

 

Figure 6: Histogram of simulation when n=50, 

θ= 15 

 

Figure 7: Histogram of simulation when n=75, θ= 11 

 

Figure 8: Histogram of simulation when  n=100,θ= 9 

 

Figure 9: Histogram of simulation when n=200, θ= 5 

 

Figure 10: Histogram of simulation when n=300, θ= 2
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12. APPLICATION 

In this section, we use and analyse the two real-life data sets to show that the Length-biased Prakaamy distribution 

fits better than the Prakaamy distribution, Exponential distribution, Lindley distribution. The following two data sets 

are provided below as: 

 
Data set 1: The following data represent 40 patients suffering from blood cancer (leukemia) from one of Ministry of 
Health Hospitals in Saudi Arabia (see Abouammahet al.). The ordered lifetimes (in years) are given below 
 
0.315, 0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 2.211, 2.37, 2.532, 2.693, 2.805, 2.91, 2.912, 
3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.381, 4.392, 4.397, 
4.647, 4.753, 4.929, 4.973, 5.074, 5.381 
 

Data set 2: Relief in minute’s analgesic data of 20 patients has been reported by Gross and Clark in (1975). 

 

1.1,  1.4,  1.3,  1.7,  1.9,  1.8,  1.6,  2.2,  1.7,  2.7,  4.1,  1.8,  1.5, 1.2,  

1.4,  3.0,  1.7,  2.3,  1.6,  2.0 
Estimates of the unknown parameters are carried out in R software along with calculation of model comparison 

criterion values like AIC, AICC, BIC and -2logL values. In order to compare the two models, the AIC (Akaike 
information criterion), AICC (corrected Akaike information criterion) and BIC (Bayesian information criterion) are used. 
The better distribution corresponds to lesser AIC, AICC and BIC values. The generic formulas for calculation of AIC, 
AICC and BIC are 
 

LkAIC log22 −= ; 
1

)1(2

−−

+
+=

kn

kk
AICAICC  and  LnkBIC log2log −=  

where k is the number of parameters in the statistical model, n is the sample size and –LogL is the maximized value 
of the log-likelihood function under the considered model. Table 2 shows the parameter estimation and standard error 
values. Table 3 shows the performance of the distributions. Figure 11 shows Fitting density curves of data set 1 based 
on data of patients suffering from blood cancer (leukemia) and Figure 12 shows Fitting density curves of data set 2 
based on relief in minutes of analgesic patients. 
 

Table 2: Shows values of ML estimates, and corresponding standard errors 
Data Set Distribution Parameter MLE Standard Error 

 
    
    1 

LBP θ 2.1361574 0.1188292 

Prakaamy θ 1.72885043 0.09691529 

Exponential θ 0.31839887 0.05034279 

Lindley θ 0.52692133 0.06074766 

 
 

      2 

LBP θ 3.011022 0.207976 

Prakaamy θ 2.273508 0.161589 

Exponential θ 0.5263164 0.1176875 

Lindley θ 0.8161188 0.1360929 

 
Table 3: Shows values of 2logL, AIC, BIC, and AICC 

Data Set Distribution -2logL AIC BIC AICC 

 
 
 

1 

LBP 139.7248 141.7248 143.4137 141.8332632 

Prakaamy 140.6615 142.6615 144.3504 142.7667632 

Exponential 171.5563 173.5563 175.2452 173.6615632 

Lindley 160.5012 162.5012 164.19 162.6064632 

 
 

      2 

LBP 49.50585 51.50585 52.50158 51.72807222 

Prakaamy 61.43961 63.43961 64.43534 63.66183222 

Exponential 65.67416 67.67416 68.66989 67.89638222 

Lindley 60.4991 62.4991 63.49483 62.72132222 
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Ordered lifetimes (in years)  

Figure 11: Fitting density curves of data set-1 of patients 

suffering from blood cancer (leukemia)

 

 

Relief in minutes of analgesic patients 

Figure 12: Fitting density curves of data set-2     

based on relief in minutes of analgesic patients 

 
From Table 3, it has been observed that the Length-biased Prakaamy distribution has smaller AIC, AICC, -LogL 

and BIC values as compared to the Prakaamy distribution, Exponential distribution, and Lindley distribution, which 

clearly indicates that Length-biased Prakaamy distribution fits better than Prakaamy distribution, Exponential 

distribution, and Lindley distribution. Hence we can conclude that the Length-biased Prakaamy distribution leads to a 

better fit than the above distributions. 

CONCLUSION 

In the present study we have studied a Length-biased Prakaamy distribution as a new generalization of 

Prakaamy distribution. The new distribution is generated by using the weighting technique and taking the one 

parameter Prakaamy distribution as the base distribution. Some mathematical properties along with reliability 

measures are discussed. The hazard rate function and reliability behaviour of the Length-biased Prakaamy 

distribution exhibits that subject distribution can be used as a lifetime model. Finally, real life data has been 

analysed for comparisons purpose, and it has been analysed that Length-biased Prakaamy distribution shows 

better performance than Prakaamy, Exponential, and Lindley distributions. 

In the present study we have studied a Length-biased Prakaamy distribution as a new generalization of the 

Prakaamy distribution. This new distribution is created by employing a weighting technique and using the one-

parameter Prakaamy distribution as the foundation. The research delves into various mathematical properties and 

discusses reliability measures associated with this distribution. The findings suggest that the Length-biased 

Prakaamy distribution's hazard rate function and reliability behaviour make it suitable as a lifetime model. 

Moreover, the study includes an analysis of real-life data for comparison purposes. It indicates that the Length-

biased Prakaamy distribution more beneficial than other distributions, such as Prakaamy, Exponential, and Lindley 

distributions. 

This suggests that the Length-biased Prakaamy distribution may offer a more accurate and useful model for 

analysing and predicting the behaviour of certain real-world data compared to the other distributions mentioned. 

The term "better performance" indicates that it might have a better fit or provide more accurate predictions for the 

specific dataset analysed in the study. However, it's important to consider that the suitability of a distribution 

depends on the specific characteristics of the data being analysed, and the choice of distribution should be based 

on the data's underlying properties and assumptions. 
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