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Abstracts: A given R-module M is called a right np-injective module if for any non-nilpotent element = of &, and any
right R-homomorphism f: & —+ M can be extended to & —+ M, if M = R, is np-injective, then & is a right np-injective ring.
A given ring & is called right weakly np-injective if for each non-nilpotent element & of &, there exists a positive integer 1
such that any right R-homomorphism fix*& =+ can be extended to & —+M. A given ring & is a right weakly np-
injective ring, if M = Hg. In the matrix ring, we poved that & is right np-injective, for some 1 = 3, if M, (2] is right Weakly
np-injective. So, We extended many of the known properties and characterizations of right np-injective rings and
modules. Finally, the main result in np-injective module found that the R-module # is np-injective module if and only if
for any o ENCA) the short exact sequence 0 —uR 4 oy LN el =0 of R-modules,
0 = Homg[ 8/ ek M) iﬁHnmR(R,Mj LHumR(n:R,MJ —+10 is also a short exact sequence, where F[fl= f& and
L0F) = F4

Keywords: Np-Injective, Trivial Extention, Non-Nilpotent Element, Annihilator,R-Modules.

1.INTRODUCTION

In this article, every given rings B are associative rings with identity. All R-modules are unital. The right
annihilator and the left annihilator of ¢ are denoted by z(ez] and lg(et) , respectively. So, we denote
N(R),U(R), Y(Rg)and ,J{R) as the nilpotent elements, unit elements, right singular points, and Jacobson radical
of &, respectively. So, £, and £ are the set of integers modulo * and integer numbers. Also, the set of all the
abelian groups of R-homomorphism from 3 to N are denoted by Hamig( M, N 1[9]. Additionally, if a given ring of
scalars B is commutative. Then, rm =mr, for all ¥ € B, € M. So, we get that for any @ = N[ R, for
(e, ) E S =R £ M, there exist € ZV with &® = 0, then (&, m1* " = (™1, (n + La™mn) = (0,0), for
every ot € N(R) and for every mm € M. Thus, the set of all nilpotent elements in E © M is given by:
N{R o M) ={{e,m)|e EN(R) and m € M} In adition, if any principal right ideal I of B and any right R-
homomorphism g: I —+ M there exists ¥ in a R-module M such that g{ ) = ¥ for all 5 in I, then M is called p-
injective which is defined by Ming in [7]. In[5], Yue Chi Ming generalized p-injective, which is np-injective. He has
defined that a right R-module M is called right np-injective if for any &t & N{ R}, any R-homomorphism f: ctR — M
can be extended to & —+ M or equivalently, there exists 2 € M such that f(x) = mx, for all x € &R, So, the
ring & is called right np-injective if g is np-injective. Wei and Chen are defined weakly np-injective in [3]. A right R-
module M is called weakly np-injective if for any & & N{ R, there exists a positive integer 1t and any right R-
homomorphism f: &®E —+ M can be extended to F — M. Or equivalently, there exists 7 € M such that
flx) =mx forall x € ™R Itis easy to check that every right np-injective module is right weakly np-injective. If
Lz is weakly np-injective, then E is a right weakly np-injective ring [3]. On the other hand, Wei and Chen are
generalized p-injective to nil-injective. They have defined that a right R-module # is called nil-injective, if for any R-
homomorphism foeR —+ M can be extended to Ry —* M, or equivalently, there exists ™M € M such that
flx) =mx, for all x € &R, So, the ring E is called right nil-injective if Eg is nil-injective. Furthermore, right
reduced ring and p-injective ring are right nil-injective, but right nil-injective is not right p-injective in general by[8].
Wei and Chen are defined Whnil-injective in [8], a right module M is called Whnil-injective if any 0 = & & N( R,
there exists a non-negative integer 1t such that & # O and any right R-homomorphism fa™E — M can be
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extended to & —+ M. Or equivalently, there exists 12 € M such that f{x) =mx for all x € &E. It is easy to

check that every right nil-injective module is right Whnil-injective. If Eg is Whnil-injective, then & is called right Wnil-
injective ring [8]. Several authors, including [4], [1] and [2], have investigated the concept of nil-injective, Whnil-
injective rings and modules.

2. NP-INJECTIVE RINGS

In this part, we look at some fundamental results concerning np-injective and weakly np-injective rings.
Proposition2.1 For aring E, the following conditions are equal.

(1R is a right np-injective ring.

(2) Ig(re(e)) = Rax, for every & & N(R)).

(3)re(e) S rg (), where &, f & N(R), then iR S &R,

(4) 1g(rp(@) N BR) = 1(F) + aR, forall o, f € R with fae & N,

(511ffieR = R, ¢ & N(F), is R-linear, then f{¢t) € Rex.

Proof. [1 =2} For any & & N(F). Let ket € Rex, then keez = 0, for each ¥ E F and z € rz(e&). This
implies ket € I5(z), for each z € vz (e, yielding Rer = ig(rz{&)). On the other hand, if x € 1g(7z{e)), then
ey = 0 for each ¥ € ¥ lex) . Thus, x¥ = 0. then rz (&) = 1z (x]). So, let feeR = R such that f{eer) = x7, for
each T=F is a well-defined R-linear map as @r =ear' implies that ai{r—r"1 =0 that is
(r—r" € rp(a) Srp(x). So, flar) =xr =xr' = f(ar"). Since R is np-injective, there is ¥ £ R such that
fler) = year, forall ar € @B . Hence, x¥ = yeer, for all ¥ = K. More specifically, for ¥ = 1, we get X = ¢ex and
this gives x & Rex. Therefore, IRICTRI:cx:I:I = Fex. Hence, IR[TR(HJJ = Rex, for each ct & N[ R,

(2= 3] Suppose e ff & N(R)) such that rz{e) = r(f). Then, IRICTRI:JI?:I:I = IR[TR [cx:l:I. Therefore,
Rfi = ER[TR{JE}] = ER[TR{fx}] = Re.

(3= 4] First, (1) + Re) SIg(BRE N v({e)) as x € (Iz(f) + Eer) implies that x = ¥ + ke, where
v =0 Now, we must show x©EI(FRENr(e)). Then, x(FENr(a)) =0 Therefore,
(v+ ka)(BR Nrp(ee)) =0, We have,
(v+ ke (BR N (@) = (¥ + ka) Btlaft = 0,¢ € R} = (yft|t € R} = (0. Then, & € 1o(BR N 75 ().
Thus, (Ig( )+ Ree) S 1g(FRE N rx(ee)). Now, let x € [g(BR N rg ()], then x{(FR M re(ee)) = 0. This means
that xfft=0 and aft=0 for all tE R So, whenever t& rg{eefi),t Erg(xff), showing that
rplaf) Sy (xf) and so Exff = Rafi (by (3)). This implies that, xff = peff, for some » € R, yielding
(x —pe) €E10(#), that is xEI(FI+ Re. Thus, I(FEN»(e)) S (Iz(F)+ Ea). Hence,
(PR Nogla)) = () + R,

(4 =CS) Let f: xR = B, & & N(E) be R-homomorphism. Then, f(e&) =&, for some & € . We aim to
demonstrate that, & £ Eet. Now, let X € rz(er). Then, we get, 0 = flex) = fla)x = dx. So, rgl(e) S 1 ().
This indicates that, 1g(7z(8)) & 7z (7z(e)). So, d € Ig(r(8]) S lg(relex)). But, Ip(7z(et)) = Ree. We set,
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f=1 in (4. Therefore, IRICR ] TR[cx:I:I = IRICTR(:xj:l =lglrgla) NEB) =1,(1)+ Fe = Rex. Hence,
td € Rex.

(5 = 1jLet f: @R = R be R-homomorphism with fie) € Rex. Then, f{e) = cezx, for some ¢ € B. This
proves (1).

Theorem 2.2 Assume E is a right np-injective ring and Foiy B R, €0.. &0 By is a direct sum, for each
oy & N(R), for 1=12,..,n. Then, any R-homomorphism fo,F & c,Rp.. @ o, R = R extends to
g R =R

Proof. Suppose that fee; R + e, B+... +ex, E = B is an R-homomorphism. Since f|e; R is a right np-injective,
then fleR:e,B = R is given by fle;) =eaf;, for some f; EF and for i =1,2,...,m Obviously,
tty + -+ e, @ N(R), where &r; @ N(R), fori = 1,2,..., 7. Since E is np-injective, then the R-homomorphism
hice, + ap+... +oe, )R = R defined by 2l ey + -+ + @, ) = (ey + -+ &, ). Therefore, } can be extented to
R-homomorphism & such that g: B = E. Since (#;+... +8,)F = §,F+...+§,F, then:

flo,+ -+ ea,)=hla,+ -+ a,)
fle )+ flea )+ 4 flee,)=hla, + o, + -+ e,)
ey iy + i, + ot S, = oy o, + o+, ) f
ey iy e+t = e+, f

Since Rty P Ree, @P.. P Rar,, is direct sum, which implies that cqffy = ey, ., = ff, ...,
anﬁn = fxnﬁ that is f'-{:['.IEI[' = fxf.l'?, for each o & N[R;I, for i=1,2,...,n Hence,
fiRee, + Ree; + -+ Ree,, = R can be extended as g: B — R,

Theorem2.3 Let R be a right np-injective ring, the sum £, 8 @ 8.8 & . . f5,.F be direct, 5; € N(E], for each
i=12,..,m  D=fR+..+fR  and T=pf R+ . +BR  1=k<n  Then,

(DN T =Ig(D)+ Ig(T).

Proof. Letx € ({g(D)+ I5(Th) thenx = ¥ + =, for Dome ¥ € I5( D),z € 14(T). Now, foranyk ED N T,
then xk=(y+z)k=yk+zk=0+0=0_ Therefore, (lg{DI+Ig(TN=ig(DNT) Now, let
x €l (DN T) then y: P+ T — R given by {5+ t) = 5x is an R-homomorphism. By using Theorem 2.2, can
be extended. Therefore, ¥(5+ t) = a(5+ t), for some & €K and, for each (5+t) € (D + TJ. Now,
at = y(0+t)=0.x =0,soa € 1(T). Therefore, ¥(5+ t) = a5+ t) = 5x, yields (x — &)5 = 0, that is,
(x—a)Eiz(Dand so (x —a)+ a=x. Then, x € (Ig(D)+ Iz(T)). Thus, Iz(DN T S 1[0+ 1(T).
Asaresult, (DN T =100+ I.(T.

Theorem2.4 Assume R is a right np-injective ring. If the sums @k &g fE and Ree € Rf¥ are both direct sum, then
Iple) + 1o(B) =R fore & N(E).

Proof. We have, [1z{e) + 1z(f)) SR . We define, f: (e + F)E = R by fi{a+ f)k) = fk. We must

demonstrate that f is well-defined. If k &' ER, then (&4 flk = (ee+ Ik’ this implies that
alk — k"= k' — k) EaR N SR But, aR PR is a direct, so a(k —k') = B{k'— k) =0, yielding
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fk! = k. Thus, f is well-defined. We know that F is a right np-injective, then f can be extended on E. Therefore,

fle+ ) =y(a+ (), for some ¥ €ER. Then, f =y{a+ f), and so yae = ({1 —yIff EaR N fR = {0}
implies that ¥ € Ig{a), 1 —y € Iz(f). Thisindicates that 1 € Iz{¥) + 15 £). Whence, iz¥) + ;) = E.

Proposition2.5 An integral domain is right np-injective if and only if it is a division ring.

Proof. Assume that a given ring F is a division ring, then for any & = R, either ¢ = 0 or & is a unit. If & is unit,
then 7g{&) = 0. Since @~ * € R. Thus, R = Ee. Therefore, by Theorem 2.1, ig(rz{&)) = Rer and so R is a
right np-injective.

Conversely, let 0 == ¢ & N(E) and let f: &R — & be given by f{eek) =k, f is a well-defined since E is an
integral domain. Also f is R-linear. Now, by hypothesis, f can be extended to an R-linear map g: B = E. Hence,
eegl 1) = gle) = f(e) = 1. This shows that e is a unit of . Hence, R is a division ring.

Proposition2.6 Assume that a given ring R is a local right np-injective ring. Then, etR 1 fE # 0, for any
e, i & N(R).

Proof. Suppose that wR MR =0 and the R-homomorphism f:{a+ IR =+ R defined by
fFillae+ k) =Rk Let (e + flk = (a+ Ik so, a(k — k") = (k' — k) =0, yielding &' = fk. Thus,
f is a well-defined. Since E is right np-injective, then f can be extended to R-homomorphism & to E. Therefore,
file+ 510 = (e + By, for some ¥ € E. Thus, f# = (& + )1¥. Since E is local, then either ¥ or 1 — ¥ is a
unit, but 0= ay =fF{1 —y)E{aR N FE) ={0}. Thus, @ =0 or =0, it is a contradiction. Hence,
R N FR =0 forany e, f & N[(R).

Proposition2.7 Every non-zero divisor of & is invertible in E.. If £ is a right np-injective ring.

Proof. Assume ¥ is a non-zero divisor of ®. Define F: ¥E — R by F{yer) = e, for all ¢ € E. Then, F is a well-
defined right R-homomorphism. We know that L is a right np-injective ring, then there exists an R-homomorphism
H:R - E, for every a right R-homomorphism I:E —E such that HoI=F. |f H{1)=u € R, then
1=F(e)=Hol{c) =H(e) = cH(1) = cu. Then, ¥ = ¥uy, which yields ¥{ 1 — 1y} = 0, whence my = 1.
Therefore, ¥ is invertible in &

Proposition2.8 Assume E is a principal ideal ring such that F has no non-zero nilpotent elements. If E. is a right
np-injective ring, then J{R) = ¥ Rg].

Proof. Letx € ¥{Rg]. Since Y(Ry) is a two-sided ideal, then, for each ¥ € B. ¥x € ¥(Rg). Then, ¥z [¥x) is
essential ideal of B, let ¥ € (rg(¥x) N 75 {1 — ¥x)) implies ¥¥x = 0 and ¥(1 — ¥x) = O gives ¥ = 0, this is a
contradiction. Thus, 7z(1 —¥x) = 0 implies that ig{rz(1 —yx)) = 14(0), that is, B(1 —yx) = R. Thus,
¥(1—yx) =1, forsome ¥ € R, so 1 — ¥x has left inverse, for all ¥ € E. By [Proposition 6.1.8.,[6]] , x € J{R.
Thus, ¥(Eg) = J(E). Now, let x € J{R). We want to show x € ¥{Ez), thatis rz(x) N &R = O implies &R = 0.
Now, let & & N{R7. Then, *x(x) N &R = 0 indicates that {gz{rz{x) N &R} =, (0. By Proposition 2.1,
xR+ lglee) =R, so we can write xk+ p= 1, which implies p = 1 —xk € Izl e).Since x € J(R). By
Proposition [Proposition 6.1.8.,[6]], 1 — xk is left invertible that is pt = 1 € {z( e}, for t € R, yielding ¥z et) = R
and so ¢ = 0, Thus, ek = 0. Hence, J(E) = Y{Rg). Therefore, J{R] = Y{Rg]).
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Proposition2.9 Let B be a right np-injective and let &, § & N[ K.
(1) If Bf¥ embeds in R, then SR is an image of &R,
(2) If Ret is an image of B, then &R embeds in fR.
3) If B 2 Rex, then R = iR,

Proof. (1) Let F: 8F — «F = F be an R-monomorphism, then F{#) = eeu, for some # € E. Since F is a right
np-injective, then F( ) = #f, for some ¥ € E. So, vff = ue, for someut £ K. Let H: Ree =+ B} defined by
H(ke) = (vf)k, for every XK ER. Then H is a well-defined as ket = k't implies ke = uk'er, yielding
wftk = wfik', that is H{ ker) = H(k'a). Now, we show that H is onto. Let x € g #2f7], then we have vffx =0,
which implies that e2x = 0. Since F is a monomorphism, then F{ ffx) = O, which implies ffx = 0. This shows that
x € 1 (#). Therefore, ([ ¥ff) € rx (£), which implies IRI:TR[B]:I = IRICT‘R(‘E?B]:I. So, Rff E vfiR, that is
fi = wvfik = H(ke), thus H is onto. Hence, Rf§ is an image of Rtx.

(2) Suppose FffR —+ oK = R is an onto R-homomorphism, let #, # and H be as in , that is HRa — Eff
defined by H{ ka) = k{#f), vff = ue, for some ¢t € . Now, & = F(i5) = a( )5 = vfi5 for some 5 € R. If
Hikea) =0, then #ffk =0 and hence ke = kufis = kvfi.s = 0.5 =20, thus H is one-one. Hence, Ef§
embeds in e,

(3) Combining (1) and (2), we get (3).
3. MAIN RESULT

Our interest here is in right np—injective rings. So, we find some properties and characterizations about np-
injective rings. On the other hand, we discuss an annihilator condition of trivial extensions. Assume E is a ring, the
trivial extension § = R ot & = {{'&, £ |ex, # € E} is a ring with addition defined componentwise and multiplication
defined by: [et, f1(¥, d) = (eey, el + Fy). Furthermore, it can be notice that for any & € N{ R, then
(e, f) €5 =R & R, there exists 1t € Z¥ such that &™ = 0, then (&, £ = (™, (n+ Da®B) =0
where B is a commutative ring.

Theorem3.1 The following ring E. statements are equal:
(1) E is right np-injective ring.
(2) (a) If {er; B}, is a family of o5 R of E, for each et; & N{E). Then {g{Nf, e, R) = X% 1p(ex, R
(b) ig(rpi{Rer)) = Rex, for every & & N(R].

Proof. (1=2a) Let xeX'_, l(e;R), for each a; & N(E), where {=12,..,m Then,
x=3 +¥w+-+ ¥, for some v, Elgle,B). Now, for any kel My, aF),
xk=(w+ym+t-+tylk=wmk+yvk+-+yrk=0+0+--+0=0 Thus, xel (N, aF).
Therefore, L%, 1a(e, B) = 1,0N%, e, R). Now, we will prove lgiee,B M e, R) S Iglee, R) + (e, B). Let
¥ € lgleey R M e,R) and feey R + a,R = R given by fler) = e, for each ¢ € ety B and fF{f) = (1 +¥)f, for
each f# £ tt; . Obviously, the two expressions for f agree on ¢z, B N e, K, this R-homomorphism is well defined.
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Since K is np-injective, then by Proposition 2.1, there is * = K such that f(‘rj =xr, foreach v € o, k. Ifr = r,
then & = f{a)=2xe. Then, (x— 1le=0. Therefore, x—1¢&l(e;B). If r=§, then
fle) =(14+y)F=xB Therefore, (1+¥—x)F =0 As a result, {1+ ¥ —x) El(e,F). Hence,
¥=(x—10+(1+y—x) €lgley R+ iz(a,F). We obtain, {gle;B) + Ip(e,B) = 1ol R N, R). By
induction, assume that (N7t e, B) = B2 100 e, R). We have to prove that Lg{ N7, e &) = X%, 1o(e, B).
Lety € l(N", a,F) and f: ;R = R given by flet;) = ex;, where i = 1,2,...,7 and f{fF) = (1 +¥)f, for
all # € &,,B. We know that B is np-injective then by Proposition 2.1, there is X € E such that f(*) = x¥, for each
r € e R, where {=12,..,m If »r=g;, then e, = fle,)=xe;,. Then, (x— 1)e; = 0. Therefore,
x—1lelntlaer) X8 i(aF). if r=feaR then fIFI=({1+y)f=xf Thus,
(1+y—x)f =0, Therefore, (L+y—x) €lgle,R) Hence,
y=(x—1+{1+y—x) e T2 x(a.R) + lz(a,F). We obtain, 1(N™%, R =27, 1.(c,R).

(1 =>2b) Forany &t; & N(R). Let z € rz(Re;), then ke;z = 0, for each & € R. This implies ket; € {z(z),
for each z€7p(Ra;), yieldng Re, S lg(rg(Re)). On the other hand, if 3 € lg(rz(Rer)), then
fe,R = BR S R such that fl.ee;¥) = fr, for each ¥ € B is a well-defined R-homomorphism. Since & is right np-
injective, there is an X € E such that f{e;r) = xe,r, for all &;7 € &¢;F. Hence, fr = xe, 7, for all ¥ € E. More
specifically, for ¥ = 1, we have fi = xe&; and this gives i € Rer;. Therefore, Ig(rz{Ret;)) = Rer;. Hence,
IR[TR{Rafjj = Re,, for each &; & N(R).

(2=>1) For any e; @ N(E), where i =1,...,7. Suppose that fe;R = R is R-homomorphism. Then,
fle,) = f(1)a; Then, f(lla; - rg(Rea;)= 0. By using(2b), gives f(lja; € ig(7p(Re;)) = Re;. Let
fil)==x | for some XxXER. Therefore, the R-homomorphism fee,® = E  given by

flor) = fla)r = f(1)a,r = xa,r, forall @r € k. Thus, f can be extended from R to R. Hence, E is right
np-injective ring.

Theorem 3.2 Let & be aring and 5 = E ¢ K| the trivial extension of K. Then, E is right np-injective ring if and
only if one of the conditions listed below is satisfies:

1. 1505(0,)) = S(0, ).
2. lelrelee, 0)) = S{e, 0.
3. ISI:TS[cx, txj:l = S(ee,ex).

Proof. (1). Let {(f.e)E(0,a)S For some (x,¥IES, (fc)=(xv)(0ea)=1{0xe) Then,
¥ = xae € Ree = lg(rp(e)). Therefore, 0= xe.x,, for all x € R and %x; €7zle). Now, suppose that
(f#,¥) & 1:(n(0,e&)). Then, there exists (x4, ¥, € re(0, &) such that [0, xe){xy, ) = (O,xeex )+ {0,0].
Then, xax;+ 0. By Theorem 2.1, xea& lg{rp(e)) =Ree, which is contradiction. Therefore,
5(0,a) S Is(re(0, ). On the other hand, let (£.¥) € 1:(r(0,a)), then 7:(0, &) S r(f,¥). Now,
(0,2)(0,1) = (0,0) implies that (0,1} € 7(0,&) € 7(F,¥). so, (0.£) = (£)(0,1) = (0,0} and thus
£ =0.1f x € rz(e), then x = O, which implies ([0, ec)(x, 0) = {0,0), that is (x, 0) € (0] = re(fF¥).
Which gives (fx,¥x] = (f#,¥)(x 0) = (0,0) and hence ¥x = 0, that is X € r;(¥]. Therefore, 7z {et) = 75(¥).
Thus, ¥ € iglrp(e)) = Rex. So, let ¥ = tex, for some t £ B, Then, (£, ¥) = ({0, ta) = (£, 0000, ) € 5[0, ex ).
Hence, L (0, e = S0, er).
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Conversely, let € lg(r(a)), then  rple) = re (). If (x,¥) Erg(0,e), then
(0,ex) = (0,e){x,¥) = (0,0) and so ax = 0. That is, X € 1l e} = 7, (), yielding (0,f) (x ¥) = {0,0).
Since (%, ¥) € 1 (0, &), then 75 (0, &) S 75 (0,5). So we have (0, ) € {7z (0, &)) = ${0, &), that implies
(0,£) = (x,¥)(0,a) = (0,xa), for some (%, ¥] €5. Thus, f = xax € k. Hence, Ig(7z(a)) = Ra.

(2). Let (3, ¥) € Le(r{ e, 0. Firstly, we need to show that, ({7, ¥) = {m, (e, 0}, for some (P, g) E 5. We
have, (3 ¥) € lc{nie, 0)) implies that r:(ee,0) = r(f ¥). We will show that 7z{e) = (7 and
el Srp(¥). We take x € rglee), then e@x =0, which implies (e Oi(x,0)=(00) and so
(x,0) € e, 0) S 12 ¥). Finally, the equation {{,¥)(x,0) = (0,0), gives fx = 0 and ¥x = 0, yielding
re(ee) S 7 () and 7x(er) S 75 (¥). Thus, Lg(7e(F)) = ig(re(e)) and L7z (¥)) S Ig{7x(er)). This further
implies that Ef SRe and Ry S Re. Therefore, (f,¥) = (tee, ke), for some tkEER and
(F.¥) = (t k)(e,0) € S(ex, 0). Hence, Lg(rs(ex, 0)) = (&, 0)S.

Conversely, let x £ lg(7e(e)). Then, 7x{e) S rp(x). If (P, g) € reler, 0), then p E rx(e&) E 1z (%) and
g € re(et) S 7 (%) and so we have, (x, 0){(p, g) = (0,0), thatis, ([, g € ¥ (x,0). Thus, rs{e, 03 S »lx, 0,
which implies  I5(re(x,00) € Is(re(er, 0)), that is, S(x0)ES(e.0), so we can write
(1,1)(x0) = (x,0) = (u, v)(er, 0) = (neex, wer), for some (1, ¥) € 5, yielding * = uex, thus x € Fex. Hence,
{g(re(ee)) = Rex. Therefore, igirg(ee)) = Rex,

@). Let [B.¥) € l(rsler,e)), then rele.c) S (B, ¥). If x € rgle), then (e, a)(x,0) = (0,0), that is,
(x,0) €npler, )  w(f¥), then (B,¥)(x0) =(0,0) implies ffix=0yx =0, that is, x € 1g(fF) and
x € Lz(¥), which implies Lg(7x(#)) S Ig(rz(e)) and Lg(re (¥)) S ig(rz ()], so we can write £ = ter and
¥ = ka. Thus, (5, ¥) = (&, k) (. ). Therefore, Lg(re(et, a)) = S{ee,ex).

Conversely, let x € Lg(rz{et)), then vz (er) S rp(x). Let (p, §) € reler, &r), which implies ap = 0,aq = 0,
so we have p Ergle) Srp(x) and g Eryle) S rp(x), that is, xp =0 and xg= 0, which implies
(x,x)(p,g) =(00), that is, (pg)leErixx). Thus, 7ple.e)=Srix,x), which implies
Is[rs[x,x:ljl = Is[rs[cx, cx:ljl, then we have (x,x)={(k t)(e, ), for some [k tJES, vyielding
x = ket, x = kee + tee. Therefore, x € Rer. Thus, Lg(re(et)) = Rex,

Corollary 3.3 Let E.be aring. If § = E o | is right Weakly np-injective, then E is right np-injective.

Proof. Assume S =R R, For any 0# aE R, 0={0,a] E5. Since § =R & is right Weakly np-
injective, then by [Theorem 2.1,[3]] there exists 7t == 0 such that (0,e&)™ # 0 and {g(r(0, &)™) = S(0,a)™.
Since {(0,e)? = 0, it has to be that 1t = 1. So 1(75(0, &) ) = S(O, &) It follows from Theorem 3.2, R is right np-
injective.

Theorem 3.4 Assume R is a commutative ring, if every right R-homomorphism from kR + ff+(ee) to R
extends to one from E to B, forany &t € N{ R, Then, § = B ® R is right np-injective.

Proof. Let F be a commutative ring and 5§ = R e« R Let o & N(R), then (&, f1™ = (™, mx(”"i:'ﬁj = (0,0]
and N(5) = {[cx, eSSl eNR and ff B Suppose, = (ee, 1€ N(5) and f’HS —+ & is a right S-
homomorphism. We want to show that f has an extension on 5. Let f(e.f1=(pg)lES. Let
gol + fr, (o) = R be given by gl eek + fy) = pk + gy for some p, &, ¢, ¥ € K. We first show that g is well-
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defined. If eehy + iy, = ek, + S¥., for some ¥y, ¥2 € relee), then wky, — ak, + By, — fy, = 0, therefore

alky — k) + By —¥2) =0, then Cer, B0y, — ¥a, by — k) = (0,07, Then,
Flee )y — ¥, &y — k)] = FLO0). Therefore, Flee Bily — vz, k& — &;) = (0,0). Thus,
(P q)(¥ — ¥z, Ky — Kz = (0,07, Then, plky — ko) + gy, —¥:) = (0,0). yielding

pky+ gy, =pk, + gy, thus g is well-defined. So, & is a right R-homomorphism as
gllok+ fy)+ (ak'+ By 1) =plk + &+ qly + ¥') = (pk+ g¥) + (pk' + g¥) = glak + By) +
glak' + By')

and g(tlak + By)) = gltek + tfy) = tpk + tgy = t(pk + gq¥) = tg{ak + B¥). So, there exists £ € R
such that g([w) = zw, for all W £ &R + fr.(er). Now, giet) = zex but g(ex) = p. So, &tz =p. Let gxR = B
be given by @(at)={(fz—git. @ is well-defined for if &t = at' then by definiton of g,
Fz(t —t") = Bg(11(t—t") = g(Bt — t)) = q(t — t7), which implies (ffiz—g)t =1(fz—qg)t'. Thus,
there exists M € R such that atrm = @) |, which implies awm = ol eeu) = (—fz + gu, for all # € R,
yielding g = em + fiz. Let W = (z,m) € 5. Then, uWw = (&, f)(z,m) = (az,aem + fz) = (p.q) = f(w).
Thus, F(W) = 1w, So, hS — S given by &{ 1] = W is the extension of f. Hence 5 is a right np-injective.

Theorem 3.5 Assume E is aring.and & = M, (&) be the matrix ring, for c¢ & N{ R} . Then the followings are
true:

(1) Ls(rs(Epyee)) = SE,; aif and only if Lg{7z(ex)) = Rex.
(2) If M, (] is right Weakly np-injective, for some 7t = 2, then E is right np-injective.

Proof. (1) Let f# € 1g(r(er)), then rz(e) = 75 (). Now, take (¥:;) Ere(@Ey ), then

11 ¥z -+ « Fin
¥21 ¥z - ' F11

Fa1 ¥az ! ! v Yan

Do oo OO
Lo I o T o L
oo oo OO
L I
L I
L I T B R

So, we have &tyy; =0, forall i = 1,2,...,n. Thatis, ¥y; € *elet) S vz (), so fiyy; =0, for all £, yielding
(BEn ) (¥y) =0 Thus, [T’:‘j] E g (FE,1), hence Tl Epy) S 75 (FEn ). Rt
E,, € l(rs(eE,,)) = SaE,,. So we can write BE,5 = [d[.j.]gEnl, where [d[-j] =85 which implies
£ =d,, & € Ra. Hence, {g(7p()) = R .

Conversely, Let £ = (ff;;) € Lg(7(@E,; )) then 75 (@B, ) S 72 (B) . Now, if £ = 1, then (&E,)E; =0,
which implies E;; € vp(aE, ) S el B), thus E; ;B =0, that is, (f,J(E;) =0 hence ffy; =0, for
k=12,..,n So,

Pu O . . . O
B O . . . O
B = , . . .
.IE'n.l a .. . 0
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Now, If f# Ergle), then @By Erl(aE, ) Sr(f). So, f Er(fy), for i=12,..,m Thus,

re(e) S r(fi)  implies IR(TR[.IEM']) = IR[TR[ﬂjj, then 54 € Il (Fi ) S ig(r(a)) = Ree.  So,
.Igfl = t[‘lfx with tfj_ ER fori=1,...,7 Thus,

tllcx D ' ] ' I:::I tll I:::I ' ' ' [:I
tyae O . . . O t, O . . . 0O

B=|: o= e s [(eB) ES(aE ).
t,yee O . . 0 ta O . . .0

Therefore, {g(re(aE,; )] = S(aE,; ).

(2): Let O = ¢ £ N(E) and take, # = & E,; . Now, M,,[R] is right Weakly np-injective, so there exists 1t = 1

such that um = 0 and Sire(u)) = Su™. Since nZa
o o o 0o o0 0 o o o 0o o0 0
0 R T O R A O 0 R T O R A O

,uh = 8 g g 8 8 g 8 g g 8 8 g =0. So, it must be that M =1 and
0 O R A O 0 O R A O
e O 00O 0 0 e O 00O 0 0

e(re((2t)) = Su. Thus, F is right np-injective.

4. NP-INJECTIVE MODULES

We study the main result about np-injective module and short exact sequence. Firstly, we redefine that a module
M is called np-injective module if each & & MR} and each R-homomorphism f: &R — M there exists a R-

homomorphism g: R =+ M such that fix) = g(%), for every x € &R, or equivalently, the Figure 4.1 is
commutative.

0 * aR - R

M
Figure 4.1 : Graph of R—-Homomorphism Commutative

Where € is injective R-homomorphism. Furthermore, let M and & be two R-modules. So, the set of all the
abelian group of R-homomorphism from M to N are denoted by Homz({M N) given by

(fF+giim)= f(m)+ g(m) for every m € M and f. g € Homg (M, N). The main result of this section is
equivalent of np-injective modules in terms of short exact sequence of modules[6].
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Theorem 4.1 [Theorem 1.1., [10]] Let f: M — N be an R-homomorphism, let 4 be a submodule of M, let B be a
submodule of N, and let f{ &) = E. Define the function p: M /4 = N/B by p(m + 4) = f{m) + B. We say
that ¢ is the R-homomorphism induced by f. Then p is an R-epimorphism if f is an R-epimorphism, and g is a R-
monomorphism if 4 = £ "1 B.

Corollary 4.2 [ Corollary 1.1.1, [10]] Let f: M — N be an R-epimorphism. Then, M /Ker(f1 & N,
Proposition 4.3 If My is np-injective and By is weakly np-injective, then M £E B is weakly np-injective.

Proof. Let 0 # & € N{R). As, B is a weakly np-injective, then there exists 7t € W such that &™ # 0 and every
left R-homomorphism &™ R —+ B extends to a homomorphism from B to B. Suppose, f: a” R — M (& B is a right
R-homomorphism. Let k;: M B —+ M and kM B —+ B be the projections. Now, the right R-
homomorphism szaﬂﬂ — B extends to B = B. So, there exists & € B such that sz[a”tj = ba™t, for each
a”t € a®R . Since M is np-injective the right R-homomorphism f;, : a"R — B extends to a homomorphism from
R to M, So there exists m € M such that f, (a"t) =ma”t, for each a"t €a™R . Now, for each
(mb)EMEE and for each a*t ca™R we have

(a™t) = (fki[a"’"t},sz [a:”‘tj) = (ma®t, ba™t) = (m, b)a™t. Thus, g a"R >M{@B extends to
E — M @ B. Hence, M &P B is weakly np-injective.

Theorem 4.4 Assume M is an R-module. Then,  is np-injective if and only if for any & & N{E), short exact

A g
sequence U =+ af — R — R /aR — 0 of R-modules

L F
0 — Homg(R/aR M) — Homg(R M) — Homg(aR M) =0
is also a short exact sequence, where F(fy=Ffdand £{f) = FA.

Proof. Assume M is a np-injective module. We shall first demonstrate that F is an R-monomorphism. Assume
F(f) =F(g), for some f, g € Homgz(R/aR, M). Then, for every & € R, f(F(&)) = g(F(b)). We want to
prove that f = g. Since & is an R-epimorphism, then for each (¢ + @R} € E/aR there exists & & such that
() = ¢ + ak . Then, for each (¢ + aR) € R/aR, flc+ aB) = f{&{b)) = g(8(b1)) = g(c). Thus, f = 7.
Consequently, F is an R-monomorphism. Second, we discover that £ is an R-epimorphism. Let
& € Homg(aR, M. We know that M is np-injective, there exists f € Homg(R M) such that g = fd = L£(f).
Therefore, £ is an R-epimorphism. Finally, we demonstrate that Ker(.L] = Im(F). Let f € Im(F), so there
exists g € Homg(R/aR M) such that £(g) =gd =f. Let x € aR. So, A(x) € Im{4) = Ker(d). Then
dlAx11 =10, so T(glzﬂ,[x]jl) = grﬂli.l[xjjl =g(0+ aR) =0. Since F is an R-monomorphism, then
g(A(x])) = f(x) = £(f) = 0. Therefore, f € Ker(£), so that Im(£) € Ker(£). Let f € Ker(£) be an
arbitrary. Then, £{f1 = f4 =0, so that 0 = f(Imd) = f{Kerd). we know Ker({d) = R and f(Kerd) =0,
there is an induced R-homomorphism g: B /Ker{ &) — M given by p(m + Kerd)) = f(m) by Theorem 4.1.
Also, since Ker(d] = R and d{Kerd] = 0, there is an induced R-isomorphism &: B /Kerd — R /aR which is
given by £(b+ Kerd) =43(B) by Corollary 4.2. Consider pe~ ' R/aR — M. Notice that ps~*
homomorphism since £ and £ - are R-homomorphism. Since @(b+ Kerd) =(b) implies that
b+ Kerd = c715(b), for every BER, pe™28(b) = p(b + Kerd) = f(b), so f =pe 18 =F(pe™?).
Thus, f € Imi(F) and Ker(£)=Im(F).  Therefore, Ker(£)=Im(F) and  hence,
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; F
0= Homg(R/aR M) — Homg(R M) — Homg(aR,M) - 0 is a short exact sequence. Assume that
whenever 0= alf 2R 3 R/alk =0 is an exact sequence between R-modules,
0 — Homg(R/aRk, M) - Homg(R, M) = Homg(aR, M) — 0 is also exact. Since & is a submodule of an

L
R-module B, then 0 — af — F is a sequence with the inclusion map t and f: @R — M is an R-homomorphism.
As we see Figure 4.2, m: B — R /aR is the projection R-homomorphism. We know that the inclusion map ¢t is an R-
monomorphism, the projection map 7 is an R-epimorphism, and Ker( 71 = Im(t], the above row is exact. Then,

n I
0= Homg(R/aR M) — Homg(R,M) — Homg{aR, M) — 0 is also exact. Since f € Homg{aR, M)
and R is an R-epimorphism, there exists g € Homg( R, M) such that I{g) = gt = g|I = f. As aresult, M is

np-injective.
aR - R
EI /
B
M

Figure4.2: Exact Sequence between R-Modules

R/aR [+ ]
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