On np-injective rings and Modules

Ferman A. Ahmed, Abdullah M. Abdul-Jabbar^{1,2}

^{1,2}Department of Mathematics, College of Science, Salahaddin University-Erbil, Kurdistan Region - Iraq. Email; <u>1ferman.ahmed@su.edu.krd</u>. <u>2abdullah.abduljabbar@su.edu.krd</u>.

Abstracts: A given R-module \mathcal{M} is called a right np-injective module if for any non-nilpotent element α of \mathcal{R} , and any right R-homomorphism $f: \alpha \mathcal{R} \to \mathcal{M}$ can be extended to $\mathcal{R} \to \mathcal{M}$, if $\mathcal{M} = \mathcal{R}_{\mathcal{R}}$ is np-injective, then \mathcal{R} is a right np-injective ring. A given ring \mathcal{R} is called right weakly np-injective if for each non-nilpotent element α of \mathcal{R} , there exists a positive integer \mathbf{n} such that any right R-homomorphism $f: \alpha^* \mathcal{R} \to \mathcal{M}$ can be extended to $\mathcal{R} \to \mathcal{M}$. A given ring \mathcal{R} is a right weakly np-injective ring, if $\mathcal{M} = \mathcal{R}_{\mathcal{R}}$. In the matrix ring, we poved that \mathcal{R} is right np-injective, for some $\mathbf{n} \ge 2$, if $\mathbf{M}_{\mathbf{n}}(\mathcal{R})$ is right Weakly np-injective. So, We extended many of the known properties and characterizations of right np-injective rings and modules. Finally, the main result in np-injective module found that the R-module \mathcal{M} is np-injective module if and only if for any $\alpha \notin \mathcal{N}(\mathcal{R})$ the short exact sequence $0 \to \alpha \mathcal{R} \xrightarrow{\mathcal{X}} \mathcal{R} \to \mathcal{R}/\alpha \mathcal{R} \to 0$ of R-modules, $0 \to Hom_{\mathcal{R}}(\mathcal{R}/\alpha \mathcal{R}, \mathcal{M}) \xrightarrow{\mathcal{Y}} Hom_{\mathcal{R}}(\alpha \mathcal{R}, \mathcal{M}) \to 0$ is also a short exact sequence, where $\mathcal{F}(f) = f\delta$ and $\mathcal{L}(f) = f\lambda$.

Keywords: Np-Injective, Trivial Extention, Non-Nilpotent Element, Annihilator, R-Modules.

1.INTRODUCTION

In this article, every given rings R are associative rings with identity. All R-modules are unital. The right annihilator and the left annihilator of α are denoted by $r_R(\alpha)$ and $l_R(\alpha)$, respectively. So, we denote N(R), U(R), $Y(R_R)$, and J(R) as the nilpotent elements, unit elements, right singular points, and Jacobson radical of R, respectively. So, \mathbb{Z}_n and \mathbb{Z} are the set of integers modulo n and integer numbers. Also, the set of all the abelian groups of R-homomorphism from M to N are denoted by $Hom_R(M,N)$ [9]. Additionally, if a given ring of scalars R is commutative. Then, rm = mr, for all $r \in R, m \in M$. So, we get that for any $a \in N(R)$, for $(\alpha, m) \in S = R \propto M$, there exist $n \in \mathbb{Z}^+$ with $\alpha^n = 0$, then $(\alpha, m)^{n+1} = (\alpha^{n+1}, (n+1)\alpha^n m) = (0,0)$, for every $\alpha \notin N(R)$ and for every $m \in M$. Thus, the set of all nilpotent elements in $R \propto M$ is given by: $N(R \propto M) = \{(\alpha, m) | \alpha \in N(R) \text{ and } m \in M\}$. In adition, if any principal right ideal I of R and any right Rhomomorphism $g: I \to M$, there exists y in a R-module M such that $g(\beta) = \beta y$ for all β in I, then M is called pinjective which is defined by Ming in [7]. In[5], Yue Chi Ming generalized p-injective, which is np-injective. He has defined that a right R-module M is called right np-injective if for any $\alpha \notin N(R)$, any R-homomorphism $f: \alpha R \to M$ can be extended to $R \to M$, or equivalently, there exists $m \in M$ such that f(x) = mx, for all $x \in \alpha R$. So, the ring R is called right np-injective if R_R is np-injective. Wei and Chen are defined weakly np-injective in [3]. A right Rmodule M is called weakly np-injective if for any $\alpha \notin N(R)$, there exists a positive integer n and any right Rhomomorphism $f: \alpha^n R \to M$ can be extended to $R \to M$. Or equivalently, there exists $m \in M$ such that f(x) = mx, for all $x \in \alpha^n R$. It is easy to check that every right np-injective module is right weakly np-injective. If R_R is weakly np-injective, then R is a right weakly np-injective ring [3]. On the other hand, Wei and Chen are generalized p-injective to nil-injective. They have defined that a right R-module M is called nil-injective, if for any Rhomomorphism $f \alpha R \to M$ can be extended to $R_R \to M$, or equivalently, there exists $m \in M$ such that f(x) = mx, for all $x \in \alpha R$. So, the ring R is called right nil-injective if R_R is nil-injective. Furthermore, right reduced ring and p-injective ring are right nil-injective, but right nil-injective is not right p-injective in general by[8]. Wei and Chen are defined Wnil-injective in [8], a right module M is called Wnil-injective if any $0 \neq \alpha \in N(R)$, there exists a non-negative integer n such that $\alpha^n \neq 0$ and any right R-homomorphism $f\alpha^n R \rightarrow M$ can be

extended to $R \to M$. Or equivalently, there exists $m \in M$ such that f(x) = mx for all $x \in \alpha^n R$. It is easy to check that every right nil-injective module is right Wnil-injective. If R_R is Wnil-injective, then R is called right Wnil-injective ring [8]. Several authors, including [4], [1] and [2], have investigated the concept of nil-injective, Wnil-injective rings and modules.

2. NP-INJECTIVE RINGS

In this part, we look at some fundamental results concerning np-injective and weakly np-injective rings.

Proposition2.1 For a ring R, the following conditions are equal.

(1)R is a right np-injective ring.

(2) $l_R(r_R(\alpha)) = R\alpha$, for every $\alpha \notin N(R)$.

(3) $r_R(\alpha) \subseteq r_R(\beta)$, where $\alpha, \beta \notin N(R)$, then $\beta R \subseteq \alpha R$.

 $(4) l_R(r_R(\alpha) \cap \beta R) = l_R(\beta) + \alpha R, \text{ for all } \alpha, \beta \in R \text{ with } \beta \alpha \notin N(R).$

(5) If $f: \alpha R \to R, \alpha \notin N(R)$, is R-linear, then $f(\alpha) \in R\alpha$.

Proof. $(1 \Longrightarrow 2)$ For any $\alpha \notin N(R)$. Let $k\alpha \in R\alpha$, then $k\alpha z = 0$, for each $k \in R$ and $z \in r_R(\alpha)$. This implies $k\alpha \in l_R(z)$, for each $z \in r_R(\alpha)$, yielding $R\alpha \subseteq l_R(r_R(\alpha))$. On the other hand, if $x \in l_R(r_R(\alpha))$, then $\alpha y = 0$, for each $y \in r_R(\alpha)$. Thus, xy = 0, then $r_R(\alpha) \subseteq r_R(x)$. So, let $f\alpha R \to R$ such that $f(\alpha r) = xr$, for each $r \in R$ is a well-defined R-linear map as $\alpha r = \alpha r'$ implies that $\alpha(r - r') = 0$, that is $(r - r') \in r_R(\alpha) \subseteq r_R(x)$. So, $f(\alpha r) = xr = xr' = f(\alpha r')$. Since R is np-injective, there is $\gamma \in R$ such that $f(\alpha r) = \gamma \alpha r$, for all $\alpha r \in \alpha R$. Hence, $xr = \gamma \alpha r$, for all $r \in R$. More specifically, for r = 1, we get $x = c\alpha$ and this gives $x \in R\alpha$. Therefore, $l_R(r_R(\alpha)) \subseteq R\alpha$. Hence, $l_R(r_R(\alpha)) = R\alpha$, for each $\alpha \notin N(R)$.

 $(2 \Longrightarrow 3)$ Suppose $\alpha, \beta \notin N(R)$) such that $r_R(\alpha) \subseteq r_R(\beta)$. Then, $l_R(r_R(\beta)) \subseteq l_R(r_R(\alpha))$. Therefore, $R\beta = l_R(r_R(\beta)) \subseteq l_R(r_R(\alpha)) = R\alpha$.

 $\begin{array}{ll} (3 \Longrightarrow 4) \mbox{ First, } (l_R(\beta) + R\alpha) \subseteq l_R(\beta R \cap r_R(\alpha)) \mbox{ as } x \in (l_R(\beta) + R\alpha) \mbox{ implies that } x = y + k\alpha, \mbox{ where } y\beta = 0. \mbox{ Now, we must show } x \in l_R(\beta R \cap r_R(\alpha)). \mbox{ Then, } x(\beta R \cap r_R(\alpha)) = 0. \mbox{ Therefore, } (y + k\alpha)(\beta R \cap r_R(\alpha)) = 0. \mbox{ We } \mbox{ have, } (y + k\alpha)(\beta R \cap r_R(\alpha)) = ((y + k\alpha)\beta t | \alpha\beta t = 0, t \in R) = (y\beta t | t \in R) = \{0\}. \mbox{ Then, } x \in l_R(\beta R \cap r_R(\alpha)). \mbox{ Thus, } (l_R(\beta) + R\alpha) \subseteq l_R(\beta R \cap r_R(\alpha)). \mbox{ Now, let } x \in l_R(\beta R \cap r_R(\alpha)), \mbox{ then } x(\beta R \cap r_R(\alpha)) = 0. \mbox{ This means that } x\beta t = 0 \mbox{ and } \alpha\beta t = 0, \mbox{ for all } t \in R. \mbox{ So, whenever } t \in r_R(\alpha\beta), t \in r_R(x\beta), \mbox{ showing that } r_R(\alpha\beta) \subseteq r_R(x\beta) \mbox{ and so } Rx\beta \subseteq R\alpha\beta \mbox{ (by (3)). This implies that, } x\beta = p\alpha\beta, \mbox{ for some } p \in R, \mbox{ yielding } (x - p\alpha) \in l_R(\beta), \mbox{ that is } x \in l_R(\beta) + R\alpha. \mbox{ Thus, } l_R(\beta R \cap r_R(\alpha)) \subseteq (l_R(\beta) + R\alpha). \mbox{ Hence, } l_R(\beta R \cap r_R(\alpha)) = l_R(\beta) + R\alpha. \end{array}$

 $(4 \Longrightarrow 5)$ Let $f: \alpha R \to R$, $\alpha \notin N(R)$ be R-homomorphism. Then, $f(\alpha) = \delta$, for some $\delta \in R$. We aim to demonstrate that, $\delta \in R\alpha$. Now, let $x \in r_R(\alpha)$. Then, we get, $0 = f(\alpha x) = f(\alpha)x = \delta x$. So, $r_R(\alpha) \subseteq r_R(\delta)$. This indicates that, $l_R(r_R(\delta)) \subseteq r_R(r_R(\alpha))$. So, $d \in l_R(r_R(\delta)) \subseteq l_R(r_R(\alpha))$. But, $l_R(r_R(\alpha)) = R\alpha$. We set,

 $\beta = 1$ in (4). Therefore, $l_R(R \cap r_R(\alpha)) = l_R(r_R(\alpha)) = l_R(r_R(\alpha) \cap R) = l_R(1) + R\alpha = R\alpha$. Hence, $d \in R\alpha$.

 $(5 \implies 1)$ Let $f: \alpha R \rightarrow R$ be R-homomorphism with $f(\alpha) \in R\alpha$. Then, $f(\alpha) = c\alpha$, for some $c \in R$. This proves (1).

Theorem 2.2 Assume R is a right np-injective ring and $R\alpha_1 \oplus R\alpha_2 \oplus \ldots \oplus R\alpha_n$ is a direct sum, for each $\alpha_i \notin N(R)$, for i = 1, 2, ..., n. Then, any R-homomorphism $f\alpha_1 R \oplus \alpha_2 R \oplus \ldots \oplus \alpha_n R \to R$ extends to $g: R \to R$.

Proof. Suppose that $f \alpha_1 R + \alpha_2 R + \ldots + \alpha_n R \to R$ is an R-homomorphism. Since $f | \alpha_i R$ is a right np-injective, then $f | \alpha_i R : \alpha_i R \to R$ is given by $f(\alpha_i) = \alpha_i \beta_i$, for some $\beta_i \in R$ and for $i = 1, 2, \ldots, n$. Obviously, $\alpha_1 + \cdots + \alpha_n \notin N(R)$, where $\alpha_i \notin N(R)$, for $i = 1, 2, \ldots, n$. Since R is np-injective, then the R-homomorphism $h(\alpha_1 + \alpha_2 + \ldots + \alpha_n) R \to R$ defined by $h(\alpha_1 + \cdots + \alpha_n) = (\alpha_1 + \cdots + \alpha_n)\beta$. Therefore, h can be extended to R-homomorphism g such that $g: R \to R$. Since $(\beta_1 + \ldots + \beta_n) R \subseteq \beta_1 R + \ldots + \beta_n R$, then:

$$f(\alpha_1 + \dots + \alpha_n) = h(\alpha_1 + \dots + \alpha_n)$$

$$f(\alpha_1) + f(\alpha_2) + \dots + f(\alpha_n) = h(\alpha_1 + \alpha_2 + \dots + \alpha_n)$$

$$\alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_n \beta_n = (\alpha_1 + \alpha_2 + \dots + \alpha_n)\beta$$

$$\alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_n \beta_n = \alpha_1 \beta + \alpha_2 \beta + \dots + \alpha_n \beta$$

Since $R\alpha_1 \bigoplus R\alpha_2 \bigoplus ... \bigoplus R\alpha_n$ is direct sum, which implies that $\alpha_1\beta_1 = \alpha_1\beta$, $\alpha_2\beta_2 = \alpha_2\beta$, ..., $\alpha_n\beta_n = \alpha_n\beta$ that is $\alpha_i\beta_i = \alpha_i\beta$, for each $\alpha_i \notin N(R)$, for i = 1, 2, ..., n. Hence, $f: R\alpha_1 + R\alpha_2 + \cdots + R\alpha_n \to R$ can be extended as $g: R \to R$.

Theorem2.3 Let R be a right np-injective ring, the sum $\beta_1 R \oplus \beta_2 R \oplus \ldots \oplus \beta_n R$ be direct, $\beta_i \notin N(R)$, for each $i = 1, 2, \ldots, n$, $D = \beta_1 R + \ldots + \beta_k R$ and $T = \beta_{k+1} R + \ldots + \beta_n R$, $1 \le k \le n$. Then, $l_R(D \cap T) = l_R(D) + l_R(T)$.

Proof. Let $x \in (l_R(D) + l_R(T))$, then x = y + z, for $D \text{ ome } y \in l_R(D)$, $z \in l_R(T)$. Now, for any $k \in D \cap T$, then xk = (y + z)k = yk + zk = 0 + 0 = 0. Therefore, $(l_R(D) + l_R(T)) \subseteq l_R(D \cap T)$. Now, let $x \in l_R(D \cap T)$, then χ : $D + T \to R$ given by $\chi(s + t) = sx$ is an R-homomorphism. By using Theorem 2.2, can be extended. Therefore, $\chi(s + t) = \alpha(s + t)$, for some $\alpha \in R$ and, for each $(s + t) \in (D + T)$. Now, $\alpha t = \chi(0 + t) = 0$, x = 0, so $\alpha \in l_R(T)$. Therefore, $\chi(s + t) = \alpha(s + t) = sx$, yields $(x - \alpha)s = 0$, that is, $(x - \alpha) \in l_R(D)$ and so $(x - \alpha) + \alpha = x$. Then, $x \in (l_R(D) + l_R(T))$. Thus, $l_R(D \cap T) \subseteq l_R(D) + l_R(T)$. As a result, $l_R(D \cap T) = l_R(D) + l_R(T)$.

Theorem2.4 Assume *R* is a right np-injective ring. If the sums $\alpha R \oplus \beta R$ and $R\alpha \oplus R\beta$ are both direct sum, then $l_R(\alpha) + l_R(\beta) = R$, for $\alpha, \beta \notin N(R)$.

Proof. We have, $(l_R(\alpha) + l_R(\beta)) \subseteq R$. We define, $f: (\alpha + \beta)R \to R$ by $f((\alpha + \beta)k) = \beta k$. We must demonstrate that f is well-defined. If $k, k' \in R$, then $(\alpha + \beta)k = (\alpha + \beta)k'$, this implies that $a(k - k') = \beta(k' - k) \in \alpha R \cap \beta R$. But, $\alpha R \bigoplus \beta R$ is a direct, so $\alpha(k - k') = \beta(k' - k) = 0$, yielding 3151

 $\beta k' = \beta k$. Thus, f is well-defined. We know that R is a right np-injective, then f can be extended on R. Therefore, $f(\alpha + \beta) = \gamma(\alpha + \beta)$, for some $\gamma \in R$. Then, $\beta = \gamma(\alpha + \beta)$, and so $\gamma \alpha = (1 - \gamma)\beta \in \alpha R \cap \beta R = \{0\}$ implies that $\gamma \in l_R(\alpha)$, $1 - \gamma \in l_R(\beta)$. This indicates that $1 \in l_R(\gamma) + l_R(\beta)$. Whence, $l_R(\gamma) + l_R(\beta) = R$.

Proposition2.5 An integral domain is right np-injective if and only if it is a division ring.

Proof. Assume that a given ring R is a division ring, then for any $\alpha \in R$, either $\alpha = 0$ or α is a unit. If α is unit, then $r_R(\alpha) = 0$. Since $\alpha^{-1} \in R$. Thus, $R = R\alpha$. Therefore, by Theorem 2.1, $l_R(r_R(\alpha)) = R\alpha$ and so R is a right np-injective.

Conversely, let $0 \neq \alpha \notin N(R)$ and let $f: \alpha R \to R$ be given by $f(\alpha k) = k$, f is a well-defined since R is an integral domain. Also f is R-linear. Now, by hypothesis, f can be extended to an R-linear map $g: R \to R$. Hence, $\alpha g(1) = g(\alpha) = f(\alpha) = 1$. This shows that α is a unit of R. Hence, R is a division ring.

Proposition2.6 Assume that a given ring *R* is a local right np-injective ring. Then, $\alpha R \cap \beta R \neq 0$, for any $\alpha, \beta \notin N(R)$.

Proof. Suppose that $\alpha R \cap \beta R = 0$ and the R-homomorphism $f: (\alpha + \beta)R \to R$ defined by $f((\alpha + \beta)k) = \beta k$. Let $(\alpha + \beta)k = (\alpha + \beta)k'$. So, $\alpha(k - k') = \beta(k' - k) = 0$, yielding $\beta k' = \beta k$. Thus, f is a well-defined. Since R is right np-injective, then f can be extended to R-homomorphism R to R. Therefore, $f((\alpha + \beta)) = (\alpha + \beta)\gamma$, for some $\gamma \in R$. Thus, $\beta = (\alpha + \beta)\gamma$. Since R is local, then either γ or $1 - \gamma$ is a unit, but $0 = \alpha\gamma = \beta(1 - \gamma) \in (\alpha R \cap \beta R) = \{0\}$. Thus, $\alpha = 0$ or $\beta = 0$, it is a contradiction. Hence, $\alpha R \cap \beta R \neq 0$, for any $\alpha, \beta \notin N(R)$.

Proposition2.7 Every non-zero divisor of R is invertible in R. If R_R is a right np-injective ring.

Proof. Assume γ is a non-zero divisor of R. Define $F: \gamma R \to R$ by $F(\gamma \alpha) = \alpha$, for all $\alpha \in R$. Then, F is a well-defined right R-homomorphism. We know that R_R is a right np-injective ring, then there exists an R-homomorphism $H: R \to R$, for every a right R-homomorphism $I: R \to R$ such that $H \circ I = F$. If $H(1) = u \in R$, then $1 = F(c) = H \circ I(c) = cH(1) = cu$. Then, $\gamma = \gamma u\gamma$, which yields $\gamma(1 - u\gamma) = 0$, whence $u\gamma = 1$. Therefore, γ is invertible in R.

Proposition2.8 Assume *R* is a principal ideal ring such that *R* has no non-zero nilpotent elements. If *R* is a right np-injective ring, then $J(R) = Y(R_R)$.

Proof. Let $x \in Y(R_R)$. Since $Y(R_R)$ is a two-sided ideal, then, for each $\gamma \in R$. $\gamma x \in Y(R_R)$. Then, $r_R(\gamma x)$ is essential ideal of R, let $y \in (r_R(\gamma x) \cap r_R(1 - \gamma x))$ implies $\gamma \gamma x = 0$ and $\gamma(1 - \gamma x) = 0$ gives $\gamma = 0$, this is a contradiction. Thus, $r_R(1 - \gamma x) = 0$ implies that $l_R(r_R(1 - \gamma x)) = l_R(0)$, that is, $R(1 - \gamma x) = R$. Thus, $\gamma(1 - \gamma x) = 1$, for some $\gamma \in R$, so $1 - \gamma x$ has left inverse, for all $\gamma \in R$. By [Proposition 6.1.8.,[6]], $x \in J(R)$. Thus, $Y(R_R) \subseteq J(R)$. Now, let $x \in J(R)$. We want to show $x \in Y(R_R)$, that is $r_R(x) \cap \alpha R = 0$ implies $\alpha R = 0$. Now, let $\alpha \notin N(R)$. Then, $r_R(x) \cap \alpha R = 0$ indicates that $l_R(r_R(x) \cap \alpha R) = r_R(0)$. By Proposition 2.1, $xR + l_R(\alpha) = R$, so we can write xk + p = 1, which implies $p = 1 - xk \in l_R(\alpha)$. Since $x \in J(R)$. By Proposition [Proposition 6.1.8.,[6]], 1 - xk is left invertible that is $pt = 1 \in l_R(\alpha)$, for $t \in R$, yielding $r_R(\alpha) = R$ and so $\alpha = 0$. Thus, $\alpha R = 0$. Hence, $J(R) \subseteq Y(R_R)$. Therefore, $J(R) = Y(R_R)$.

Proposition2.9 Let *R* be a right np-injective and let $\alpha, \beta \notin N(R)$.

- (1) If $R\beta$ embeds in $R\alpha$, then βR is an image of αR .
- (2) If $R\alpha$ is an image of $R\beta$, then αR embeds in βR .
- (3) If $R\beta \cong R\alpha$, then $\alpha R \cong \beta R$.

Proof. (1) Let $F: \beta R \to \alpha R \subseteq R$ be an R-monomorphism, then $F(\beta) = \alpha u$, for some $u \in R$. Since R is a right np-injective, then $F(\beta) = v\beta$, for some $v \in R$. So, $v\beta = u\alpha$, for some $u \in R$. Let $H: R\alpha \to R\beta$ defined by $H(k\alpha) = (v\beta)k$, for every $k \in R$. Then H is a well-defined as $k\alpha = k'\alpha$ implies $uk\alpha = uk'\alpha$, yielding $v\beta k = v\beta k'$, that is $H(k\alpha) = H(k'\alpha)$. Now, we show that H is onto. Let $x \in r_R(v\beta)$, then we have $v\beta x = 0$, which implies that $\alpha x = 0$. Since F is a monomorphism, then $F(\beta x) = 0$, which implies $\beta x = 0$. This shows that $x \in r_R(\beta)$. Therefore, $r_R(v\beta) \subseteq r_R(\beta)$, which implies $l_R(r_R(\beta)) \subseteq l_R(r_R(v\beta))$. So, $R\beta \subseteq v\beta R$, that is $\beta = v\beta k = H(k\alpha)$, thus H is onto. Hence, $R\beta$ is an image of $R\alpha$.

(2) Suppose $F\beta R \to \alpha R \subseteq R$ is an onto R-homomorphism, let v, u and H be as in , that is $HR\alpha \to R\beta$ defined by $H(k\alpha) = k(v\beta), v\beta = u\alpha$, for some $u \in R$. Now, $\alpha = F(\beta s) = \sigma(\beta)s = v\beta s$, for some $s \in R$. If $H(k\alpha) = 0$, then $v\beta k = 0$ and hence $k\alpha = kv\beta s = kv\beta . s = 0$, thus H is one-one. Hence, $R\beta$ embeds in $R\alpha$.

(3) Combining (1) and (2), we get (3).

3. MAIN RESULT

Our interest here is in right np-injective rings. So, we find some properties and characterizations about np-injective rings. On the other hand, we discuss an annihilator condition of trivial extensions. Assume *R* is a ring, the trivial extension $S = R \propto R = \{(\alpha, \beta) | \alpha, \beta \in R\}$ is a ring with addition defined componentwise and multiplication defined by: $(\alpha, \beta)(\gamma, d) = (\alpha\gamma, \alpha d + \beta\gamma)$. Furthermore, it can be notice that for any $\alpha \in N(R)$, then $(\alpha, \beta) \in S = R \propto R$, there exists $n \in Z^+$ such that $\alpha^n = 0$, then $(\alpha, \beta)^{(n+1)} = (\alpha^{(n+1)}, (n+1)\alpha^n\beta) = 0$ where *R* is a commutative ring.

Theorem3.1 The following ring R statements are equal:

- (1) R is right np-injective ring.
- (2) (a) If $\{\alpha_i R\}_{i=1}^n$ is a family of $\alpha_i R$ of R, for each $\alpha_i \notin N(R)$. Then $l_R(\bigcap_{i=1}^n \alpha_i R) = \sum_{i=1}^n l_R(\alpha_i R)$.
- (b) $l_R(r_R(R\alpha)) = R\alpha$, for every $\alpha \notin N(R)$.

Proof. $(1 \Longrightarrow 2\alpha)$ Let $x \in \sum_{i=1}^{n} l_R(\alpha_i R)$, for each $\alpha_i \notin N(R)$, where i = 1, 2, ..., n. Then, $x = y_1 + y_2 + \cdots + y_n$, for some $y_i \in l_R(\alpha_i R)$. Now, for any $k \in l_R(\bigcap_{i=1}^n \alpha_i R)$, $xk = (y_1 + y_2 + \cdots + y_n)k = y_1k + y_2k + \cdots + y_nk = 0 + 0 + \cdots + 0 = 0$. Thus, $x \in l_R(\bigcap_{i=1}^n \alpha_i R)$. Therefore, $\sum_{i=1}^{n} l_R(\alpha_i R) \subseteq l_R(\bigcap_{i=1}^n \alpha_i R)$. Now, we will prove $l_R(\alpha_1 R \cap \alpha_2 R) \subseteq l_R(\alpha_1 R) + l_R(\alpha_2 R)$. Let $\gamma \in l_R(\alpha_1 R \cap \alpha_2 R)$ and $f\alpha_1 R + \alpha_2 R \to R$ given by $f(\alpha) = \alpha$, for each $\alpha \in \alpha_1 R$ and $f(\beta) = (1 + \gamma)\beta$, for each $\beta \in \alpha_2 R$. Obviously, the two expressions for f agree on $\alpha_1 R \cap \alpha_2 R$, this R-homomorphism is well defined.

Since *R* is np-injective, then by Proposition 2.1, there is $x \in R$ such that f(r) = xr, for each $r \in \alpha_i R$. If $r = \alpha$, $\alpha = f(\alpha) = x\alpha$. Then, $(x-1)\alpha = 0$. Therefore, $x-1 \in l_{R}(\alpha_{1}R)$. If $r = \beta$, then then $f(\alpha) = (1 + \gamma)\beta = x\beta$. Therefore, $(1 + \gamma - x)\beta = 0$. As a result, $(1 + \gamma - x) \in l_{R}(\alpha_{2}R)$. Hence, $\gamma = (x-1) + (1+\gamma-x) \in l_{R}(\alpha_{1}R) + l_{R}(\alpha_{2}R)$. We obtain, $l_{R}(\alpha_{1}R) + l_{R}(\alpha_{2}R) = l_{R}(\alpha_{1}R \cap \alpha_{2}R)$. By induction, assume that $l_R(\bigcap_{i=1}^{n-1} \alpha_i R) \subseteq \sum_{i=1}^{n-1} l_R(\alpha_i R)$. We have to prove that $l_R(\bigcap_{i=1}^n \alpha_i R) \subseteq \sum_{i=1}^n l_R(\alpha_i R)$. Let $\gamma \in l_R(\cap_{i=1}^n \alpha_i R)$ and $f: \alpha_i R \to R$ given by $f(\alpha_i) = \alpha_i$, where i = 1, 2, ..., n and $f(\beta) = (1 + \gamma)\beta$, for all $\beta \in \alpha_n R$. We know that R is np-injective then by Proposition 2.1, there is $x \in R$ such that f(r) = xr, for each $r \in \alpha_i R$, where i = 1, 2, ..., n. If $r = \alpha_i$, then $\alpha_i = f(\alpha_i) = x\alpha_i$. Then, $(x - 1)\alpha_i = 0$. Therefore, $x-1\in l_R(\cap_{i=1}^{n-1}\alpha_iR)\subseteq \sum_{i=1}^{n-1}l_R(\alpha_iR), \quad \text{ If } \quad r=\beta\in \alpha_iR, \quad \text{ then } \quad f(\beta)=(1+\gamma)\beta=x\beta.$ Thus. $(1+\gamma-x)\beta=0.$ $(1+\gamma-x) \in l_R(\alpha_n R).$ Therefore, Hence, $\gamma = (x-1) + (1+\gamma-x) \in \sum_{i=1}^{n-1} l_R(\alpha_i R) + l_R(\alpha_n R). \text{ We obtain, } l_R(\cap_{i=1}^n \alpha_i R) = \sum_{i=1}^n l_R(\alpha_i R).$

 $(1 \Rightarrow 2b)$ For any $\alpha_i \notin N(R)$. Let $z \in r_R(R\alpha_i)$, then $k\alpha_i z = 0$, for each $k \in R$. This implies $k\alpha_i \in l_R(z)$, for each $z \in r_R(R\alpha_i)$, yielding $R\alpha_i \subseteq l_R(r_R(R\alpha_i))$. On the other hand, if $\beta \in l_R(r_R(R\alpha_i))$, then $f\alpha_i R \to \beta R \subseteq R$ such that $f(\alpha_i r) = \beta r$, for each $r \in R$ is a well-defined R-homomorphism. Since R is right np-injective, there is an $x \in R$ such that $f(\alpha_i r) = x\alpha_i r$, for all $\alpha_i r \in \alpha_i R$. Hence, $\beta r = x\alpha_i r$, for all $r \in R$. More specifically, for r = 1, we have $\beta = x\alpha_i$ and this gives $\beta \in R\alpha_i$. Therefore, $l_R(r_R(R\alpha_i)) \subseteq R\alpha_i$. Hence, $l_R(r_R(R\alpha_i)) = R\alpha_i$, for each $\alpha_i \notin N(R)$.

 $(2 \Longrightarrow 1)$ For any $\alpha_i \notin N(R)$, where i = 1, ..., n. Suppose that $f\alpha_i R \to R$ is R-homomorphism. Then, $f(\alpha_i) = f(1)\alpha_i$. Then, $f(1)\alpha_i \cdot r_R(R\alpha_i) = 0$. By using(2b), gives $f(1)\alpha_i \in l_R(r_R(R\alpha_i)) = R\alpha_i$. Let f(1) = x, for some $x \in R$. Therefore, the R-homomorphism $f\alpha_i R \to R$ given by $f(\alpha_i r) = f(\alpha_i)r = f(1)\alpha_i r = x\alpha_i r$, for all $\alpha r \in \alpha R$. Thus, f can be extended from R to R. Hence, R is right np-injective ring.

Theorem 3.2 Let *R* be a ring and $S = R \propto R$, the trivial extension of *R*. Then, *R* is right np-injective ring if and only if one of the conditions listed below is satisfies:

- 1. $l_{S}(r_{S}(0,\alpha)) = S(0,\alpha).$
- 2. $l_{S}(r_{S}(\alpha, 0)) = S(\alpha, 0).$
- 3. $l_{S}(r_{S}(\alpha, \alpha)) = S(\alpha, \alpha).$

Proof. (1). Let $(\beta, c) \in (0, \alpha)S$. For some $(x, y) \in S$, $(\beta, c) = (x, y)(0, \alpha) = (0, x\alpha)$. Then, $\gamma = x\alpha \in R\alpha = l_R(r_R(\alpha))$. Therefore, $0 = x\alpha \cdot x_1$, for all $x \in R$ and $x_1 \in r_R(\alpha)$. Now, suppose that $(\beta, \gamma) \notin l_S(r_S(0, \alpha))$. Then, there exists $(x_1, y_1) \in r_S(0, \alpha)$ such that $(0, x\alpha)(x_1, y_1) = (0, x\alpha x_1) \neq (0, 0)$. Then, $x\alpha x_1 \neq 0$. By Theorem 2.1, $x\alpha \notin l_R(r_R(\alpha)) = R\alpha$, which is contradiction. Therefore, $S(0, \alpha) \subseteq l_S(r_S(0, \alpha))$. On the other hand, let $(\beta, \gamma) \in l_S(r_S(0, \alpha))$, then $r_S(0, \alpha) \subseteq r_S(\beta, \gamma)$. Now, $(0, \alpha)(0, 1) = (0, 0)$ implies that $(0, 1) \in r_S(0, \alpha) \subseteq r_S(\beta, \gamma)$. So, $(0, \beta) = (\beta, \gamma)(0, 1) = (0, 0)$ and thus $\beta = 0$. If $x \in r_R(\alpha)$, then $\alpha x = 0$, which implies $(0, \alpha)(x, 0) = (0, 0)$, that is $(x, 0) \in r_S(0, \alpha) \subseteq r_S(\beta, \gamma)$. Which gives $(\beta x, \gamma x) = (\beta, \gamma)(x, 0) = (0, 0)$ and hence $\gamma x = 0$, that is $x \in r_S(\gamma)$. Therefore, $r_S(\alpha) \subseteq r_S(\gamma)$. Thus, $\gamma \in l_R(r_R(\alpha)) = R\alpha$. So, let $\gamma = t\alpha$, for some $t \in R$. Then, $(\beta, \gamma) = (0, t\alpha) = (t, 0)(0, \alpha) \in S(0, \alpha)$. Conversely, let $\beta \in l_R(r_R(\alpha))$, then $r_R(\alpha) \subseteq r_R(\beta)$. If $(x, y) \in r_R(0, \alpha)$, then $(0, \alpha x) = (0, \alpha)(x, y) = (0, 0)$ and so $\alpha x = 0$. That is, $x \in r_R(\alpha) \subseteq r_R(\beta)$, yielding $(0, \beta)$ (x, y) = (0, 0). Since $(x, y) \in r_R(0, \alpha)$, then $r_R(0, \alpha) \subseteq r_R(0, \beta)$. So we have $(0, \beta) \in l_R(r_R(0, \alpha)) = S(0, \alpha)$, that implies $(0, \beta) = (x, y)(0, \alpha) = (0, x\alpha)$, for some $(x, y) \in S$. Thus, $\beta = x\alpha \in R$. Hence, $l_R(r_R(\alpha)) = R\alpha$.

(2). Let $(\beta, \gamma) \in l_s(r_s(\alpha, 0))$. Firstly, we need to show that, $(\beta, \gamma) = (p, q)(\alpha, 0)$, for some $(p, q) \in S$. We have, $(\beta, \gamma) \in l_s(r_s(\alpha, 0))$ implies that $r_s(\alpha, 0) \subseteq r_s(\beta, \gamma)$. We will show that $r_R(\alpha) \subseteq r_R(\beta)$ and $r_R(\alpha) \subseteq r_R(\gamma)$. We take $x \in r_R(\alpha)$, then $\alpha x = 0$, which implies $(\alpha, 0)(x, 0) = (0, 0)$ and so $(x, 0) \in r_s(\alpha, 0) \subseteq r_s(\beta, \gamma)$. Finally, the equation $(\beta, \gamma)(x, 0) = (0, 0)$, gives $\beta x = 0$ and $\gamma x = 0$, yielding $r_R(\alpha) \subseteq r_R(\beta)$ and $r_R(\alpha) \subseteq r_R(\gamma)$. Thus, $l_R(r_R(\beta)) \subseteq l_R(r_R(\alpha))$ and $l_R(r_R(\gamma)) \subseteq l_R(r_R(\alpha))$. This further implies that $R\beta \subseteq R\alpha$ and $R\gamma \subseteq R\alpha$. Therefore, $(\beta, \gamma) = (t\alpha, k\alpha)$, for some $t, k \in R$ and $(\beta, \gamma) = (t, k)(\alpha, 0) \in S(\alpha, 0)$. Hence, $l_s(r_s(\alpha, 0)) = (\alpha, 0)S$.

Conversely, let $x \in l_R(r_R(\alpha))$. Then, $r_R(\alpha) \subseteq r_R(x)$. If $(p,q) \in r_S(\alpha,0)$, then $p \in r_R(\alpha) \subseteq r_R(x)$ and $q \in r_R(\alpha) \subseteq r_R(x)$ and so we have, (x,0)(p,q) = (0,0), that is, $(p,q) \in r_S(x,0)$. Thus, $r_S(\alpha,0) \subseteq r_S(x,0)$, which implies $l_S(r_S(x,0)) \subseteq l_S(r_S(\alpha,0))$, that is, $S(x,0) \subseteq S(\alpha,0)$, so we can write $(1,1)(x,0) = (x,0) = (u,v)(\alpha,0) = (u\alpha,v\alpha)$, for some $(u,v) \in S$, yielding $x = u\alpha$, thus $x \in R\alpha$. Hence, $l_R(r_R(\alpha)) \subseteq R\alpha$.

(3). Let $(\beta, \gamma) \in l_s(r_s(\alpha, \alpha))$, then $r_s(\alpha, \alpha) \subseteq r_s(\beta, \gamma)$. If $x \in r_R(\alpha)$, then $(\alpha, \alpha)(x, 0) = (0, 0)$, that is, $(x, 0) \in r_s(\alpha, \alpha) \subseteq r_s(\beta, \gamma)$, then $(\beta, \gamma)(x, 0) = (0, 0)$ implies $\beta x = 0, \gamma x = 0$, that is, $x \in l_R(\beta)$ and $x \in l_R(\gamma)$, which implies $l_R(r_R(\beta)) \subseteq l_R(r_R(\alpha))$ and $l_R(r_R(\gamma)) \subseteq l_R(r_R(\alpha))$, so we can write $\beta = t\alpha$ and $\gamma = k\alpha$. Thus, $(\beta, \gamma) = (t, k)(\alpha, \alpha)$. Therefore, $l_s(r_s(\alpha, \alpha)) = S(\alpha, \alpha)$.

Conversely, let $x \in l_R(r_R(\alpha))$, then $r_R(\alpha) \subseteq r_R(x)$. Let $(p,q) \in r_S(\alpha, \alpha)$, which implies $\alpha p = 0, \alpha q = 0$, so we have $p \in r_R(\alpha) \subseteq r_R(x)$ and $q \in r_R(\alpha) \subseteq r_R(x)$, that is, xp = 0 and xq = 0, which implies (x, x)(p,q) = (0,0), that is, $(p,q) \in r_S(x,x)$. Thus, $r_S(\alpha, \alpha) \subseteq r_S(x,x)$, which implies $l_S(r_S(x,x)) \subseteq l_S(r_S(\alpha, \alpha))$, then we have $(x, x) = (k, t)(\alpha, \alpha)$, for some $(k, t) \in S$, yielding $x = k\alpha$, $x = k\alpha + t\alpha$. Therefore, $x \in R\alpha$. Thus, $l_R(r_R(\alpha)) = R\alpha$.

Corollary 3.3 Let R be a ring. If $S = R \propto R$ is right Weakly np-injective, then R is right np-injective.

Proof. Assume $S = R \propto R$. For any $0 \neq \alpha \in R$, $0 = (0, \alpha) \in S$. Since $S = R \propto R$ is right Weakly npinjective, then by [Theorem 2.1,[3]] there exists n > 0 such that $(0, \alpha)^n \neq 0$ and $l_S(r_S(0, \alpha)^n) = S(0, \alpha)^n$. Since $(0, \alpha)^2 = 0$, it has to be that n = 1. So $l_S(r_S(0, \alpha)) = S(0, \alpha)$. It follows from Theorem 3.2, R is right npinjective.

Theorem 3.4 Assume *R* is a commutative ring, if every right R-homomorphism from $\alpha R + \beta r_R(\alpha)$ to *R* extends to one from *R* to *R*, for any $\alpha \notin N(R)$, Then, $S = R \propto R$ is right np-injective.

Proof. Let *R* be a commutative ring and $S = R \propto R$. Let $\alpha \notin N(R)$, then $(\alpha, \beta)^n = (\alpha^n, n\alpha^{(n-1)}\beta) = (0,0)$ and $N(S) = \{(\alpha, \beta) \in S | \alpha \in N(R) \text{ and } \beta \in R\}$. Suppose, $\overline{u} = (\alpha, \beta) \in N(S)$ and $f\overline{u}S \to S$ is a right Shomomorphism. We want to show that *f* has an extension on *S*. Let $f(\alpha, \beta) = (p,q) \in S$. Let $g\alpha R + \beta r_R(\alpha) \to R$ be given by $g(\alpha k + \beta \gamma) = pk + q\gamma$ for some $p, k, q, \gamma \in R$. We first show that *g* is well-3155 defined. If $\alpha k_1 + \beta \gamma_1 = \alpha k_2 + \beta \gamma_2$, for some $\gamma_1, \gamma_2 \in r_R(\alpha)$, then $\alpha k_1 - \alpha k_2 + \beta \gamma_1 - \beta \gamma_2 = 0$, therefore then $(\alpha, \beta)(\gamma_1 - \gamma_2, k_1 - k_2) = (0, 0).$ $\alpha(k_1 - k_2) + \beta(\gamma_1 - \gamma_2) = 0,$ Then, $f((\alpha,\beta)(\gamma_1-\gamma_2,k_1-k_2)) = f(0,0). \qquad \text{Therefore}, \qquad f(\alpha,\beta)(\gamma_1-\gamma_2,k_1-k_2) = (0,0).$ Thus. $(p,q)(\gamma_1 - \gamma_2, k_1 - k_2) = (0,0).$ Then, $p(k_1 - k_2) + q(\gamma_1 - \gamma_2) = (0,0).$ vieldina $pk_1 + q\gamma_1 = pk_2 + q\gamma_2$ thus g is well-defined. So, g is a right R-homomorphism as $g((\alpha k + \beta \gamma) + (\alpha k' + \beta \gamma')) = p(k + k') + q(\gamma + \gamma') = (pk + q\gamma) + (pk' + q\gamma') = g(\alpha k + \beta \gamma) + q(\gamma + \gamma') = q(\alpha k + \beta \gamma) + q(\alpha k + \beta \gamma) +$ $g(\alpha k' + \beta \gamma')$ and $g(t(\alpha k + \beta \gamma)) = g(t\alpha k + t\beta \gamma) = tpk + tq\gamma = t(pk + q\gamma) = tg(\alpha k + \beta \gamma)$. So, there exists $z \in R$ such that g(w) = zw, for all $w \in \alpha R + \beta r_R(\alpha)$. Now, $g(\alpha) = z\alpha$ but $g(\alpha) = p$. So, $\alpha z = p$. Let $\varphi \alpha R \to R$ be given by $\varphi(\alpha t) = (\beta z - q)t$. φ is well-defined for if $\alpha t = \alpha t'$, then by definition of g, $\beta z(t-t') = \beta g(1)(t-t') = g(\beta(t-t')) = q(t-t')$, which implies $(\beta z-q)t = (\beta z-q)t'$. Thus, there exists $m \in R$ such that $\alpha um = \varphi(\alpha u)$, which implies $\alpha um = \varphi(\alpha u) = (-\beta z + q)u$, for all $u \in R$, yielding $q = \alpha m + \beta z$. Let $\overleftarrow{w} = (z, m) \in S$. Then, $\overrightarrow{uw} = (\alpha, \beta)(z, m) = (\alpha z, \alpha m + \beta z) = (p, q) = f(\overleftarrow{w})$. Thus, $f(\overline{w}) = \overline{uw}$. So, $hS \to S$ given by $h(1) = \overline{w}$ is the extension of f. Hence S is a right np-injective.

Theorem 3.5 Assume R is a ring.and $S = M_n(R)$ be the matrix ring, for $\alpha \notin N(R)$. Then the followings are true:

(1) $l_S(r_S(E_{n1}\alpha)) = SE_{n1}$ a if and only if $l_R(r_R(\alpha)) = R\alpha$.

(2) If $M_n(R)$ is right Weakly np-injective, for some $n \ge 2$, then R is right np-injective.

Proof. (1) Let $\beta \in l_R(r(\alpha))$, then $r_R(\alpha) \subseteq r_R(\beta)$. Now, take $(\gamma_{ij}) \in r_S(\alpha E_{n1})$, then

/ ⁰	0	0	0	0	0	N_{11}	γ_{12}				$\begin{pmatrix} \gamma_{1n} \\ \gamma_{11} \\ \cdot \\ \cdot \\ \cdot \\ \gamma_{nn} \end{pmatrix}$	
10	0	0	0	0	_ 0 \	γ_{21}	γ_{22}				γ_{11}	l
0	0	0	0	0	0							- 0
0	0	0	0	0	0	· ·	•	•	•	•		- 0.
\ 0	0	0	0	0	- o /	<u>۱</u> .	•	•	•	•	·)	ſ
\backslash_{α}	0	0	0	0	0/	Y_{n1}	γ_{n2}	•	·	·	γ_{nn} /	

So, we have $\alpha \gamma_{1i} = 0$, for all i = 1, 2, ..., n. That is, $\gamma_{1i} \in r_R(\alpha) \subseteq r_R(\beta)$, so $\beta \gamma_{1i} = 0$, for all i, yielding $(\beta E_{n1})(\gamma_{1i}) = 0$. Thus, $(\gamma_{ij}) \in r_R(\beta E_{n1})$, hence $r_S(\alpha E_{n1}) \subseteq r_S(\beta E_{n1})$. Therefore, $E_{n1} \in l_S(r_S(\alpha E_{n1})) = S\alpha E_{n1}$. So, we can write $\beta E_{n1} = (d_{ij})\alpha E_{n1}$, where $(d_{ij}) \in S$ which implies $\beta = d_{nn}\alpha \in R\alpha$. Hence, $l_R(r_R(\alpha)) = R\alpha$.

Conversely, Let $\beta = (\beta_{ij}) \in l_s(r_s(\alpha E_{n1}))$ then $r_R(\alpha E_{n1}) \subseteq r_R(B)$. Now, if $i \neq 1$, then $(\alpha E_{n1})E_{ij} = 0$, which implies $E_{ij} \in r_s(\alpha E_{n1}) \subseteq r_s(B)$, thus $E_{ij}B = 0$, that is, $(\beta_{ij})(E_{ij}) = 0$ hence $\beta_{ki} = 0$, for k = 1, 2, ..., n. So,

$$B = \begin{pmatrix} \beta_{11} & 0 & . & . & . & 0 \\ \beta_{21} & 0 & . & . & . & 0 \\ \vdots & \vdots & \vdots & \vdots & . & . \\ \beta_{n1} & 0 & . & . & 0 \end{pmatrix}.$$

Now, If $\beta \in r_R(\alpha)$, then $\alpha E_{11} \in r_S(\alpha E_{n1}) \subseteq r_S(\beta)$. So, $\beta \in r_R(\beta_{i1})$, for i = 1, 2, ..., n. Thus, $r_R(\alpha) \subseteq r_R(\beta_{i1})$ implies $l_R(r_R(\beta_{1j})) \subseteq l_R(r_R(\alpha))$, then $\beta_{i1} \in l_R(r_R(\beta_{i1})) \subseteq l_R(r_R(\alpha)) = R\alpha$. So, $\beta_{i1} = t_{i1}\alpha$ with $t_{i1} \in R$, for i = 1, ..., n. Thus,

$$B = \begin{pmatrix} t_{11} \alpha & 0 & \dots & 0 \\ t_{21} \alpha & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ t_{n1} \alpha & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} t_{11} & 0 & \dots & 0 \\ t_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t_{n1} & 0 & \dots & 0 \end{pmatrix} (\alpha E_{n1}) \in S(\alpha E_{n1}).$$

Therefore, $l_{\mathcal{S}}(r_{\mathcal{S}}(\alpha E_{n1})) = S(\alpha E_{n1})$.

4. NP-INJECTIVE MODULES

We study the main result about np-injective module and short exact sequence. Firstly, we redefine that a module M is called np-injective module if each $\alpha \notin N(R)$ and each R-homomorphism $f: \alpha R \to M$, there exists a R-homomorphism $g: R \to M$ such that f(x) = g(x), for every $x \in \alpha R$, or equivalently, the Figure 4.1 is commutative.

Figure 4.1 : Graph of R-Homomorphism Commutative

Where α is injective R-homomorphism. Furthermore, let M and N be two R-modules. So, the set of all the abelian group of R-homomorphism from M to N are denoted by $Hom_R(M,N)$, given by (f + g)(m) = f(m) + g(m) for every $m \in M$ and $f, g \in Hom_R(M,N)$. The main result of this section is equivalent of np-injective modules in terms of short exact sequence of modules[6].

Theorem 4.1 [Theorem 1.1., [10]] Let $f: M \to N$ be an R-homomorphism, let A be a submodule of M, let B be a submodule of N, and let $f(A) \subseteq B$. Define the function $\rho: M/A \to N/B$ by $\rho(m + A) = f(m) + B$. We say that ρ is the R-homomorphism induced by f. Then ρ is an R-epimorphism if f is an R-epimorphism, and ρ is a R-monomorphism if $A = f^{-1}(B)$.

Corollary 4.2 [Corollary 1.1.1, [10]] Let $f: M \to N$ be an R-epimorphism. Then, $M/Ker(f) \cong N$.

Proposition 4.3 If M_R is np-injective and B_R is weakly np-injective, then $M \oplus B$ is weakly np-injective.

Proof. Let $0 \neq a \in N(R)$. As, B is a weakly np-injective, then there exists $n \in N$ such that $a^n \neq 0$ and every left R-homomorphism $a^n R \to B$ extends to a homomorphism from R to B. Suppose, $f: a^n R \to M \bigoplus B$ is a right R-homomorphism. Let $k_1: M \bigoplus B \to M$ and $k_2: M \bigoplus B \to B$ be the projections. Now, the right Rhomomorphism $f_{k_n}a^nR \to B$ extends to $R \to B$. So, there exists $b \in B$ such that $f_{k_n}(a^nt) = ba^nt$, for each $a^n t \in a^n R$. Since M is np-injective the right R-homomorphism $f_{k_i} : a^n R \to B$ extends to a homomorphism from R to M, So there exists $m \in M$ such that $f_{k_i}(a^n t) = ma^n t$, for each $a^n t \in a^n R$. Now, for each $a^n t \in a^n R$ $(m, b) \in M \oplus B$ and for each we have $(a^n t) = \left(f_{k_*}(a^n t), f_{k_*}(a^n t)\right) = (ma^n t, ba^n t) = (m, b)a^n t. \quad \text{Thus}, \quad g: a^n R \to M \bigoplus B$ extends to $R \rightarrow M \oplus B$. Hence, $M \oplus B$ is weakly np-injective.

Theorem 4.4 Assume *M* is an R-module. Then, *M* is np-injective if and only if for any $\alpha \notin N(R)$, short exact sequence $0 \to \alpha R \xrightarrow{\lambda} R \xrightarrow{\delta} R / \alpha R \to 0$ of R-modules

$$0 \to Hom_{R}(R/aR, M) \xrightarrow{\mathcal{L}} Hom_{R}(R, M) \xrightarrow{\mathcal{F}} Hom_{R}(aR, M) \to 0$$

is also a short exact sequence, where $\mathcal{F}(f) = f\delta$ and $\mathcal{L}(f) = f\lambda$.

Proof. Assume M is a np-injective module. We shall first demonstrate that \mathcal{F} is an R-monomorphism. Assume $\mathcal{F}(f) = \mathcal{F}(g)$, for some $f, g \in Hom_{\mathcal{R}}(\mathbb{R}/\mathfrak{aR}, \mathbb{M})$. Then, for every $b \in \mathbb{R}$, $f(\mathcal{F}(b)) = g(\mathcal{F}(b))$. We want to prove that f = g. Since δ is an R-epimorphism, then for each $(c + aR) \in R/aR$, there exists $b \in R$ such that $\delta(b) = c + aR$. Then, for each $(c + aR) \in R/aR$, $f(c + aR) = f(\delta(b)) = g(\delta(b)) = g(c)$. Thus, f = g. Consequently, \mathcal{F} is an R-monomorphism. Second, we discover that \mathcal{L} is an R-epimorphism. Let $g \in Hom_{R}(aR, M)$. We know that M is np-injective, there exists $f \in Hom_{R}(R, M)$ such that $g = f\lambda = \mathcal{L}(f)$. Therefore, \mathcal{L} is an R-epimorphism. Finally, we demonstrate that $Ker(\mathcal{L}) = Im(\mathcal{F})$. Let $f \in Im(\mathcal{F})$, so there exists $g \in Hom_R(R/aR, M)$ such that $\mathcal{L}(g) = g\lambda = f$. Let $x \in aR$. So, $\lambda(x) \in Im(\lambda) = Ker(\delta)$. Then $\delta(\lambda(x)) = 0, \text{ so } \mathcal{F}\left(g\big(\lambda(x)\big)\right) = g\delta\big(\lambda(x)\big) = g(0 + \alpha R) = 0. \text{ Since } \mathcal{F} \text{ is an R-monomorphism, then } \mathcal{F}(x) = 0$ $g(\lambda(x)) = f(x) = \mathcal{L}(f) = 0$. Therefore, $f \in Ker(\mathcal{L})$, so that $Im(\mathcal{L}) \subseteq Ker(\mathcal{L})$. Let $f \in Ker(\mathcal{L})$ be an arbitrary. Then, $\mathcal{L}(f) = f\lambda = 0$, so that $0 = f(Im\lambda) = f(Ker\delta)$. We know $Ker(\delta) \subseteq R$ and $f(Ker\delta) \subseteq 0$. there is an induced R-homomorphism $\rho: R/Ker(\delta) \to M$ given by $\rho(m + Ker\delta)) = f(m)$ by Theorem 4.1. Also, since $Ker(\delta) \subseteq R$ and $\delta(Ker\delta) \subseteq 0$, there is an induced R-isomorphism $\varepsilon: R/Ker\delta \to R/aR$ which is given by $\varepsilon(b + Ker\delta) = \delta(b)$ by Corollary 4.2. Consider $\rho \varepsilon^{-1}: R/\alpha R \to M$. Notice that $\rho \varepsilon^{-1}$ is an Rhomomorphism since ρ and ε^{-1} are R-homomorphism. Since $\varphi(b + Ker\delta) = \psi(b)$ implies that $b + Ker\delta = \varepsilon^{-1}\delta(b)$, for every $b \in R$, $\rho \varepsilon^{-1}\delta(b) = \rho(b + Ker\delta) = f(b)$, so $f = \rho \varepsilon^{-1}\delta = \mathcal{F}(\rho \varepsilon^{-1})$. and $Ker(\mathcal{L}) \subseteq Im(\mathcal{F})$. Therefore, $Ker(\mathcal{L}) = Im(\mathcal{F})$ $f \in Im(\mathcal{F})$ Thus. and hence. 3158

 $0 \rightarrow Hom_R(R/aR, M) \xrightarrow{\mathcal{L}} Hom_R(R, M) \xrightarrow{\mathcal{F}} Hom_R(aR, M) \rightarrow 0$ is a short exact sequence. Assume that whenever $0 \rightarrow aR \rightarrow R \rightarrow R/aR \rightarrow 0$ is an exact sequence between R-modules, $0 \rightarrow Hom_R(R/aR, M) \rightarrow Hom_R(R, M) \rightarrow Hom_R(aR, M) \rightarrow 0$ is also exact. Since aR is a submodule of an R-module R, then $0 \rightarrow aR \xrightarrow{\iota} R$ is a sequence with the inclusion map ι and $f: aR \rightarrow M$ is an R-homomorphism. As we see Figure 4.2, $\pi: R \rightarrow R/aR$ is the projection R-homomorphism. We know that the inclusion map ι is an R-monomorphism, the projection map π is an R-epimorphism, and $Ker(\pi) = Im(\iota)$, the above row is exact. Then,

 $0 \to Hom_R(R/aR, M) \xrightarrow{\Pi} Hom_R(R, M) \xrightarrow{I} Hom_R(aR, M) \to 0$ is also exact. Since $f \in Hom_R(aR, M)$ and aR is an R-epimorphism, there exists $g \in Hom_R(R, M)$ such that $I(g) = g\iota = g|I = f$. As a result, M is np-injective.

Figure4.2: Exact Sequence between R-Modules

REFERENCES

- Mahmood RD, Mohammad HQ. Wnil-Injective Modules. AL-Rafidain Journal of Computer Sciences and Mathematics. 2010 Mar 1;7(1):135-43.
- [2] Mahammod RD, Mohammad HQ. On Nil-Injective Rings. Tikrit Journal of Pure Science. 2012;17(4).
- [3] Wei J, Che J. Weakly np-Injective Rings and Weakly C2 Rings. Kyungpook Mathematical Journal. 2011;51(1):93-108.
- [4] Ahmed FA, Abdul-Jabbar AM. On characterizations and properties of nil-injective rings and modules. In AIP Conference Proceedings 2023 Jan 25 (Vol. 2554, No. 1). AIP Publishing.
- [5] Ming RY. On quasi-Frobeniusean and Artinian rings. Publications De L, institute Mathematique. 1983;33(47):239-45.
- [6] Bland PE. Rings and their modules. Walter de Gruyter; 2011.
- [7] Ming RY. On (von Neumann) regular rings. Proceedings of the Edinburgh Mathematical Society. 1974 Mar;19(1):89-91.
- [8] Wei JC, Chen JH. nil- injective rings. International Electronic Journal of Algebra. 2007 Jan 1;2(2):1-21.
- [9] Sharpe DW, Vámos P. Injective modules.1972 Jul 13.
- [10] Campbell RN. Injective modules and divisible groups. 2015.

DOI: https://doi.org/10.15379/ijmst.v10i3.3110

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.