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Abstract: In this article examines the convergences stability of Variational Iteration Method (VIM) for solving Fuzzy 
Volterra Integro-Differential Equations (FVIDE) of second kind under the Seikkala derivative [13]. The advantage of 
the proposed method in this study compared with Adomian decomposition Method (ADM). The undefined variables 
are represented by membership values in trapezoids and triangles. The results of the two methods are compared to 
demonstrate the efficacy of fuzzy numbers in terms of increasing membership values. 
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1. INTRODUCTION 

The significance of differential equations with delay inequalities has grown in numerous mathematical modelling 

systems, including those used in biology, engineering, etc. The fuzzy concept in delay differential equations has 

helped eliminate the fuzziness and guesswork associated with these equations. Furthermore, many researchers have 

worked on these equations intending to advance the fuzzy delay differential equations field. In this regard, we note 

the work of Abbasbandy et al. [1], who, employing the Taylor technique, discovered the numerical solution to fuzzy 

delay differential equations; Vasile Lupulescu et al. [17], who, utilizing the Liu process, demonstrated the existence 

and uniqueness of the solution to undefined delay differential equations. Normah Maan et al. In the context of 

predator-prey interactions, etc., [12] analysed the stability of the steady-state solution to the fuzzy delay differential 

equation. To solve the linear vague delay differential equations with He's polynomials, this chapter introduces the 

powerful variational iteration method (VIM) tool. For various problems in both linear and non-linear classes, "He" 

presented the variational iteration method [5-10]. Since its iterations are direct and straightforward, it reduces the 
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number of iterations calculated compared to other analytical methods used to solve these equations while still 

providing strong and simply capable solutions without sacrificing generality. A general Lagrange multiplier is used to 

build a correction function by combining the Laplace transform and variational theory. The advantages of the He's 

polynomials-based variational iteration method include its precision, ease of use, and suitability to problems arising 

in the physical realm. No rounding off or Adomian polynomial calculations are required. 

In this work, the fuzzy Integro-differential equations are iterated using the VIM due to its many benefits. Integro-

Differential equations have the generic form 

𝑢′(𝑥)  =  𝑓(𝑥, 𝑢(𝑥)), 𝑡 ∈  [𝑥0, 𝑋]     (1) 

with the initial condition 𝑢(𝑥0)  =  𝑢0, where u is a fuzzy function of 𝑥 and 𝑓(𝑥) are given real valued functions, then 

𝑓(𝑢(𝑥)) is a nonlinear function of 𝑢(𝑥). The solutions to Eq.(1) are also crisp if and only if 𝑓(𝑥) is a crisp function. 

However, if 𝑓(𝑥) is a fuzzy function, then this equation might only have ill-defined answers. We believe this strategy 

to be effective, and the numerical answer is shown to back up our claims. In this, we decompose the Fuzzy Volterra 

Integro-Differential Equations (FVIDE) with Variational Iteration Method (VIM) and Adomian Decomposition Method 

(ADM) under triangular and trapezoidal fuzzy numbers. We also discussed the convergence of variational iteration 

methods by analysing the numerical results. 

2. PRELIMINARIES 

2.1. Variation of a Function: 

A variable quality 𝒗 is a functional dependent on 𝒖(𝒙) is a function to all the corresponds values in 𝒗. The 𝒗[𝒖(𝒙)] is 

defined by 

𝐏 𝐯[𝐮(𝐱)] = [
𝛛

𝛛𝛂
 𝐯[𝐮(𝐱) + 𝛂𝐏𝐮]]

𝛂=𝟎

 

2.2. Triangular Fuzzy Number: 

Fuzzy set " "A is the triangular fuzzy number with peak (or center) " "a , left width > 0  and right 
> 0

  , has the 

following form 

 

 

 

 

 

 

2.3. The Trapezoidal Fuzzy Number: 

The trapezoidal fuzzy number is defined by four real numbers
"a,b,c,d"

. A trapezoidal fuzzy number will be denoted 

by the membership function is defined as the 
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3. HE’S VARIATIONAL ITERATION METHOD 

Now, to illustrate the basic idea of He's variable iterative method, we consider the following generalized differential 

equation given in the 

𝐿𝑢(𝑡) + 𝑁𝑢(𝑡)  =  𝑔(𝑡) 

with 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and 𝑔(𝑡) is a known analytical function. We constructing a revised 

functional according to the VIM as 

𝑢(𝑛+1)(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜆(𝜂)(𝐿𝑢𝑛(𝜂) + 𝑁�̌�𝑛(𝜂) − 𝑔(𝜂))𝑑𝜂,
𝑥

0

 

Where 𝜆 is a general Lagrange multiplier, which can be identified optimally via variational theory. Now, we apply He’s 

polynomials 

∑ 𝑃(𝑛)𝑢𝑛 =

∞

𝑛=0

𝑢0 (𝑥) + 𝑃 ∫ 𝜆(𝜂) (∑ 𝑃(𝑛) 𝐿𝑢𝑛(𝜂)

∞

𝑛=0

+ ∑ 𝑃(𝑛)

∞

𝑛=0

𝑁�̌�𝑛(𝜂)) 𝑑𝜂 −  ∫ 𝜆(𝜂)𝑔(𝜂) 𝑑𝜂
𝑥

0

.
𝑥

0

 

The comparison of like power of P give solutions of various orders in the equation (1.3.3) will gives the approximate 

values. VIMHP is formulated by the coupling of VIM and He’s polynomials. 

4. VOLTERRA FUZZY INTEGRO-DIFFERENTIAL EQUATIONS 

The Volterra integro-differential equation  of the second kind is stated by, 

'( ) ( ) ( , ), ( )) ,

u

a

u f u k u z z dz  = + −
                                                        (4.1) 

with initial condition 1( )a c =
, where a  is a constant, 

( , )k u z
 is an arbitrary kernel function. The functions 

( ( ))F z
is nonlinear function of 

( )z
. If 

( )f u
is a crisp function then the solutions of equation (3.1) are also crisp. 

However, if 
( )f u

 is a fuzzy function this equation may posses only fuzzy solutions. Let us introduce α-level set of ψ, 

f and F to the above equation and we have, 

( , ) [ ( , ), ( , )],

( , )) [ ( ( , ), ( , ), ( , ), ( , )),

( ( , ), ( , ), ( , ), ( , ))],

( , ) [ ( , ), ( , )],

( , ) [ '( , ), '( , )],0 1 [ , ]

f u f u f u

z G z z z z

H z z z z

u u u

u u u and u a b

  

            

         

     

      

=

− = − −

− −

=

=   
 

where all the derivatives are with respect to u , are fuzzy functions. Therefore, the related Volterra fuzzy integro-

differential equation of (4.1) can be written as follows 

'( ) ( ) ( , ), ( )) ,

'( ) ( ) ( , ), ( )) ,

r

a

r

a

u f u k u z z dz

u f u k u z z dz

  

  


= + −



 = + −






      (4.2) 
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for 0 1  . Suppose 
( , )k u z

 be continuous in a z b   and for fix u , the sign of 
( , )k u z

 does not change over 

[ , ]a u
, therefore we have 

'( ) ( ) ( , ) ( ( , ), ( , ), ( , ), ( , )) ,

'( ) ( ) ( , ) ( ( , ), ( , ), ( , ), ( , )) ,

u

a

r

a

u f u k u z G z z z z dz

u f u k u z H z z z z dz

          

          

= + − −

= + − −




  (4.3) 

with subject to initial condition 
1 1[ ( , ), ( , )] [ ( ), ( )]z z b b     =

 for each 0 1   and 
[ , ].z a b

 We can see 

that equation (4.3) are system of Volterra fuzzy integro-differential equations in the crisp case for each 0 1  . 

5. UNIQUENESS AND CONVERGENCE OF HE’S VARIATIONAL ITERATION METHOD 

Theorem 5.1. If a functional 𝑣[𝑢(𝑥)]; has a variation, achieves a maximum or a minimum at 𝑢 =  𝑢𝑜(𝑥), where 𝑢(𝑥) 

is an interior point of the domain of definition of the functional, then at 𝑢 =  𝑢𝑜(𝑥) [5], 

𝑃𝑣 =  0. 

5.2. Uniqueness theorem 

Theorem 5.2.1.  Let f satisfy 

|𝑓(𝑥, 𝑣)  −  𝑓(𝑥,  �̅�)|  ≤  𝑔(𝑥, |𝑣 − �̅�|), 𝑥 ≥  0, 𝑣, �̅�  ∈  𝑅, 

Proof: The proof of this theorem is similar to Theorem [11, 18]. 

Theorem 5.2.2. The problem (4.1) has a unique solution, whenever 0 <  ℵ <  1, where ℵ =  (𝑚2 + 𝑚)𝑇 and the 

constants 𝑚2 and 𝑚 are arbitrary constants, i.e., it is possible to find numbers 𝑚1, 𝑚2  >  0 such that ||𝐿𝑢||  ≤

 𝑚1||𝑢||, ||𝑅𝑢||  ≤  𝑚2||𝑢||. The nonlinear term 𝑔(𝑢) is Lipschitz continuous with |𝑔(𝑢) − 𝑔(𝑣)|  ≤  𝑚|𝑢 −  𝑣|, ∀𝑡 ∈  𝐽 =

 [0, 𝑇], for any arbitrary constants 𝑚 >  0. 

Proof: Since, the solution of Eq. (4.1) can be written in the following form 

𝑢 =  𝑓(𝑡)  −  𝐿−1[𝑅(𝑢)  +  𝑔(𝑢)], 

where f(t) is the solution of the homogeneous equation Lu = 0, the inverse operator 𝐿−1 is defined by 𝐿−1(. ) = ∫ (. )𝑑𝑡.
𝑥

0
 

Now let, u and u∗ be two different solutions to Eq.(4.1) then by using the above equation, we get 

|𝑢 − 𝑢∗| = |∫ [𝑅(𝑢 − 𝑢∗) + 𝑔(𝑢) − 𝑔(𝑢∗)]𝑑𝑡
𝑥

0
|             

≤ ∫[|𝑅(𝑢 − 𝑢∗)| + |𝑔(𝑢) − 𝑔(𝑢∗)|]𝑑𝑡

𝑥

0

 

≤ (𝑚2|𝑢 − 𝑢∗| + 𝑚|𝑢 − 𝑢∗|)𝑇 

≤ 𝛼|𝑢 − 𝑢∗| 

From which we get (1 − 𝛼)|𝑢 − 𝑢∗| ≤ 0. Since 0 < ℵ < 1, then |𝑢 − 𝑢∗| = 0 impies, 𝑢 − 𝑢∗. 

5.3. Convergence theorem 

Theorem 5.3.1. (Banach’s fixed point theorem) Assume that X be a Banach space and 𝐴 ∶  𝑋 →  𝑋 

is a nonlinear mapping and suppose that, 
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||𝐴[𝑢]  −  𝐴[𝑢∗]||  ≤  𝛾||𝑢  −  𝑢∗||;  ||𝐴[𝑢]  −  𝐴[𝑢∗]||  ≤  𝛾||𝑢  − 𝑢∗||, ∀ 𝑢, 𝑢∗  ∈  𝑋, 

For some constant 𝛾 <  1. Then A has a unique fixed point. Furthermore, the sequence 

𝑢𝑛+1 =  𝐴[𝑢𝑛];  𝑢 𝑛+1  =  𝐴[𝑢𝑛] 

with an arbitrary choice of 𝑢0;  𝑢0 ∈  𝑋, converges to the fixed point 𝐴 and 

||𝑢𝑘  −  𝑢𝑙||  ≤  ||𝑢1  −  𝑢0||
 𝛾𝑙

1 – 𝛾
  ; ||𝑢𝑘  −  𝑢𝑙||  ≤  ||𝑢1  −  𝑢0||  

 𝛾𝑙

1 – 𝛾
 

Proof: Denoting (𝐶[𝐽], ||. ||) Banach space of all continuous functions on 𝐽 with the norm defined by 

||𝑓(𝑡)||  =  𝑚𝑎𝑥𝑡∈𝐽 |𝑓(𝑡)|. 

We are going to prove that the sequence 𝑢𝑘 is a Cauchy sequence in this Banach space 

||𝑢𝑘  −  𝑢𝑙||  =  𝑚𝑎𝑥 𝑡∈𝐽|𝑢𝑘  +  𝑢𝑙|; 

||𝑢𝑘  −  𝑢𝑙||  =  𝑚𝑎𝑥𝑡∈𝐽 |𝑢𝑘  +  𝑢𝑙| 

≤  𝑚𝑎𝑥 𝑡∈𝐽 ∫ [(𝑚1 + 𝑚2 + 𝑚) (𝑢𝑘−1  +  𝑢𝑙−1)]
𝑥

0

𝑑𝜂; 

≤  𝑚𝑎𝑥 𝑡∈𝐽 ∫ [(𝑚1 + 𝑚2 + 𝑚)(𝑢𝑘−1  +  𝑢𝑙−1)]
𝑥

0

𝑑𝜂; 

≤  𝛾||𝑢𝑘−1  −  𝑢𝑙−1||;  𝛾||𝑢𝑘−1  −  𝑢𝑙−1|| 

𝑘 = 𝑙 + 1 𝑡ℎ𝑒𝑛 

||𝑢𝑙+1  −  𝑢𝑙||  ≤  𝛾||𝑢𝑙  −  𝑢𝑙+1||  ≤  𝛾2||𝑢𝑙+1  −  𝑢𝑙+1||  ≤ . . . ≤  𝛾𝑙||𝑢1  −  𝑢0||; 

||𝑢𝑙+1  −  𝑢𝑙||  ≤  𝛾||𝑢𝑙  −  𝑢𝑙+1||  ≤  𝛾2||𝑢𝑙+1  −  𝑢𝑙+1||  ≤ . . . ≤  𝛾𝑙||𝑢1  −  𝑢0|| 

From the triangular inequality we have 

||𝑢𝑘  −  𝑢𝑙||  ≤  𝛾||𝑢𝑙+1  −  𝑢𝑙||  ≤  𝛾2||𝑢𝑙+1  −  𝑢𝑙||  ≤ . . . ≤  𝛾𝑙||𝑢𝑘  −  𝑢𝑘−1||; 

||𝑢𝑘  −  𝑢𝑙||  ≤  𝛾||𝑢𝑙+1  −  𝑢𝑙||  ≤  𝛾2||𝑢𝑙+1  −  𝑢𝑙||  ≤ . . . ≤  𝛾𝑙||𝑢𝑘  −  𝑢𝑘−1|| 

≤ ||𝑢1  −  𝑢0||  𝛾𝑞
1 −  𝛾𝑘−𝑙−1

1 –  𝛾
; ||𝑢1  −  𝑢0|| 𝛾𝑞

1 −  𝛾𝑘−𝑙−1

1 –  𝛾
 

Since 0 < 𝛾 < 1 so, (1 − 𝛾𝑘−𝑙) < 1 then 

||𝑢𝑘  −  𝑢𝑙|| ≤  ||𝑢1  −  𝑢0||
 𝛾𝑙

1 –  𝛾
;  ||𝑢𝑘  −  𝑢𝑙||  ≤  ||𝑢1  −  𝑢0||

 𝛾𝑙

1 –  𝛾
; 

But ||𝑢𝑘  −  𝑢𝑙|| ≤ ∞; ||𝑢𝑘  −  𝑢𝑙|| ≤ ∞ so, as 𝑙 → ∞ then  ||𝑢𝑘  −  𝑢𝑙|| ⟶ 0; ||𝑢𝑘  −  𝑢𝑙|| ⟶ 0. We conclude that 𝑢𝑙;  𝑢𝑙 

is a Cauchy sequence in 𝐶[𝐽] so, the sequence convergent. Hence the proof. 

6. MATLAB ALGORITHM 

Here's a MATLAB code template that demonstrates the implementation of the variational iteration method for solving 

a fuzzy nonlinear DDE: 

Step 1: Represent the Fuzzy Differential Equation 

𝐷(𝑢(𝑡))  =  𝑓(𝑡, 𝑢(𝑡)), 𝑢(𝑡0)  =  𝑢0 

Step 2: Apply the Variational Iteration Method 
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𝑢(𝑡)  =  𝑠𝑢𝑚_{𝑛 = 0}^{𝑁} 𝑢_𝑛(𝑡) 

Step 3: Implement the Algorithm in MATLAB 

function u = fuzzy_diff_eq_variational_iteration(f, tspan, u0, N) 

% Inputs: 

% f: Function handle representing the fuzzy function f(t, u(t)) 

% tspan: Time span [t0, t_end] for solving the fuzzy differential equation 

% u0: Initial condition u(t0) 

% N: Number of iterations for the variational iteration method 

 

% Step 1: Set up time span and initial condition 

t0 = tspan(1); 

t_end = tspan(2); 

t = linspace(t0, t_end, 100); % Adjust the number of time steps as needed 

 

% Step 2: Initialize u(t) and perform variational iteration method 

u = zeros(1, length(t)); 

u(1) = u0; 

 

for n = 1:N 

% Construct the linear operator L 

L = @(u_n) diff(u_n, 1) - f(t, u_n); 

 

% Define the initial guess for the nth term (can be improved) 

u_n = u(n); 

 

% Use MATLAB's built-in solver to find the nth approximation 

% Adjust options as needed (e.g., 'RelTol', 'AbsTol', etc.) 

[t, u_n] = ode45(L, tspan, u_n); 

 

% Update the solution using the nth approximation 

u = u + u_n'; 

end 

end 

7. NUMERICAL EXAMPLE 

Here we demonstrate the effectiveness of He's method of repeated variables in solving differential equations with 

ambiguous initial conditions, finding approximate solutions and generating tables with graphs for analysis. Here we 

use triangular and trapezoidal fuzzy numbers for our analysis. 

Example 7.1. Let us consider the fuzzy linear Volterra Integro-differential equation of the following form 
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𝑢′′(𝑥) = 𝑥 + ∫(𝑥 − 𝑡)(𝑡)𝑑𝑡, 𝑢(0) = 0, 𝑢′(0) = 1

𝑥

0

 

7.1.1 Solving Using the Triangular Fuzzy Number 

𝑢(0) = (𝛼 − 1,1 − 𝛼); 𝑢′(0) = (𝛼, 2 − 𝛼) 

Exact solution 

𝑢(𝑥) =  
𝛼 − 1

2
[𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠ℎ𝑥] +

𝛼 + 1

2
𝑠𝑖𝑛ℎ𝑥; 

𝑢(𝑥) =  
1 − 𝛼

2
[𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠ℎ𝑥] +

3 − 𝛼

2
𝑠𝑖𝑛ℎ𝑥 

Using the VIM method, 

Left hand 

𝑢𝑛+1 (𝑥) = −1 +
𝑥3

6
−

𝑥4

24
+

𝑥7

5040
−

𝑥8

40320
+

𝑥11

39916800
−

𝑥12

479001600
+

𝑥15

1307674368000
−

𝑥16

20922789888000

+
𝑥19

121645100408832000
−

𝑥20

2432902008176640000

+ 𝑎 (1 + 𝑥 +
𝑥4

24
+

𝑥5

120
+

𝑥8

40320
+

𝑥9

362880
+

𝑥12

479001600
+

𝑥13

6227020800
+

𝑥16

20922789888000

+
𝑥17

355687428096000
+

𝑥20

2432902008176640000
+

𝑥21

51090942171709440000
) + ⋯ 

Right hand 

𝑢𝑛+1 (𝑥) = 1 − 𝑎 + (2 − 𝑎)𝑥 +
𝑥7

5040
+

𝑥8

40320
−

𝑎𝑥8

40320
+

𝑥9

181440
−

𝑎𝑥9

362880
+

𝑥11

39916800
+

𝑥12

479001600
−

𝑎𝑥12

479001600

+
𝑥13

3113510400
−

𝑎𝑥13

6227020800
+

𝑥15

1307674368000
+

𝑥16

20922789888000
−

𝑎𝑥16

20922789888000

+
𝑥17

177843714048000
−

𝑎𝑥17

355687428096000
+

𝑥19

121645100408832000
+

𝑥20

2432902008176640000

−
𝑎𝑥20

2432902008176640000
+

𝑥21

25545471085854720000
−

𝑎𝑥21

51090942171709440000

−
1

120
𝑥3(−20 + 5(−1 + 𝑎)𝑥 + (−2 + 𝑎)𝑥2) + ⋯ 

 

Table 1 Numerical results of problem 1 at t = 1 (Triangular Fuzzy Number) 

Exact ADM VIM 

Left Right Left Right Left Right 

-0.8748 3.2252 -0.8748263659 3.2252287530 -0.8748263659 3.2252287530 

-0.4648 2.8152 -0.4648208540 2.8152232410 -0.4648210000 2.8152200000 

-0.0548 2.4052 -0.0548153421 2.4052177290 -0.0548153000 2.4052200000 

0.3552 1.9952 0.3551901698 1.9952122170 0.3551900000 1.9952100000 

0.7652 1.5852 0.7651956817 1.5852067600 0.7651960000 1.5852100000 

1.1752 1.1752 1.1752011940 1.1752011940 1.1752011940 1.1752011940 
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VIM Error 

Left Right 

2.6365900E-05 -2.87530000E-05 

2.1000000E-05 -2.00000000E-05 

1.5300000E-05 -2.00000000E-05 

1.0000000E-05 -1.00000000E-05 

4.0000000E-06 -1.00000000E-05 

-1.1940000E-06 -1.19400000E-06 

 

 

Figure 1 

 

Figure 2 

Figure 1 & Figure 2 Approximate solution and exact solution (line) at t = 1.0 for 7.1.1 

7.1.2 Solving Using the Trapezoidal Fuzzy Number 

𝑢(0) = (0.0125 + 0.01𝛼, 0.1 − 0.1𝛼); 𝑢′(0) = (0.8 + 0.125𝛼, 1.1 − 0.1𝛼) 

Exact solution 

𝑢(𝑥) = (0.00625 + 0.005𝛼)[𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠ℎ𝑥] + (0.9 + 0.0625𝛼)𝑠𝑖𝑛ℎ𝑥 
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𝑢(𝑥) = (0.05 − 0.05𝛼)[𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠ℎ𝑥] + (1.05 − 0.05𝛼)𝑠𝑖𝑛ℎ𝑥 

Using the VIM method, 

Left hand 

𝑢𝑛+1 (𝑥) = 0.0125  + 0.8𝑥 + 0.16666666666666666𝑥3 + 0.0005208333333333333𝑥4 + 0.006666666666666668𝑥5

+ 0.00019841269841269836𝑥7 + 3.100198412698416 × 10−7𝑥8 + 0.000002204585537918872𝑥9

+ 2.505210838544173 × 10−8𝑥11 + 2.609594623483511 × 10−11𝑥12 + 1.28472350694573 × 10−10𝑥13

+ 7.647163731819805 × 10−13𝑥15 + 5.974346665484241 × 10−16𝑥16 + 2.249165803476414 × 10−15𝑥17

+ 8.220635246624344 × 10−18𝑥19 + 5.137897029140196 × 10−21𝑥20 + 1.565835285071305 × 10−20𝑥21

+ 𝑎(0.01  + 0.125𝑥 + 0.0004166666666666667𝑥4 + 0.0010416666666666669𝑥5

+ 2.480158730158732 × 10−7𝑥8 + 3.444664902998239 × 10−7𝑥9 + 2.087675698786807 × 10−11𝑥12

+ 2.007380479602705 × 10−11𝑥13 + 4.77947733238739 × 10−16𝑥16 + 3.514321567931908 × 10−16𝑥17

+ 4.110317623312183 × 10−21𝑥20 + 2.446617632923907 × 10−21𝑥21) + ⋯ 

Right hand 

𝑢𝑛+1 (𝑥) = 0.1  − 0.1𝑎 + (1.1  − 0.1𝑎)𝑥 +
𝑥3

6
+ 0.004166666666666667𝑥4 − 0.004166666666666667𝑎𝑥4

+ 0.009166666666666667𝑥5 − 0.0008333333333333335𝑎𝑥5 + 0.00019841269841269836𝑥7

+ 0.000002480158730158732𝑥8 − 0.000002480158730158732𝑎𝑥8 + 0.000003031305114638446𝑥9

− 2.755731922398591 × 10−7𝑎𝑥9 + 2.505210838544173 × 10−8𝑥11 + 2.087675698786808 × 10−10𝑥12

− 2.087675698786808 × 10−10𝑎𝑥12 + 1.76649482205038 × 10−10𝑥13 − 1.605904383682162 × 10−11𝑎𝑥13

+ 7.647163731819805 × 10−13𝑥15 + 4.779477332387393 × 10−15𝑥16 − 4.779477332387393 × 10−15𝑎𝑥16

+ 3.092602979780074 × 10−15𝑥17 − 2.811457254345518 × 10−16𝑎𝑥17 + 8.220635246624319 × 10−18𝑥19

+ 4.110317623312156 × 10−20𝑥20 − 4.110317623312156 × 10−20𝑎𝑥20 + 2.153023516973045 × 10−20𝑥21

− 1.957294106339131 × 10−21𝑎𝑥21 + ⋯ 

Table 2Numerical results of problem 1 at t = 1(Trapezoidal Fuzzy Number) 

Exact ADM TRA VIM TRA 

Left Right Left Right Left Right 

1.0759614113 1.3802039496 0.9865551192 1.3802039496 0.9865551192 1.3802039496 

1.0935762802 1.3392033984 1.0138469043 1.3392033984 1.0138469043 1.3392033984 

1.1111911490 1.2982028472 1.0411386895 1.2982028472 1.0411386895 1.2982028472 

1.1288060179 1.2572022960 1.0684304747 1.2572022960 1.0684304747 1.2572022960 

1.1464208867 1.2162017448 1.0957222599 1.2162017448 1.0957222599 1.2162017448 

1.1640357555 1.1752011936 1.1230140450 1.1752011936 1.1230140450 1.1752011936 

 

VIM Error 

Left Right 

0.0894062921 -2.87530000E-15 

0.0797293758 -2.00000000E-15 

0.0700524595 -2.00000000E-15 

0.0603755432 -1.00000000E-15 

0.0506986268 -1.00000000E-15 

0.0410217105 -1.19400000E-15 
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Figure 3 

 

Figure 4 

Figure 3 & Figure 4 Approximate solution and exact solution (line) at t = 1.0 for 7.1.2 

8. CONCLUSION 

Finally, this article proposes to study the VIM algorithm using the He polynomial to solve the FVID equation within the 

concept of the Seikkala derivative [13]. The proposed methodological solution compared with ADM to show the 

effective convergence of VIM. From numerical results, we have seen that the proposed strategy matches fuzzy 

numbers accurately, reliably, and consistently. The result obtained is processed graphically. 
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