Harmonic Mean Cordial Labeling of One Chord $C_n \vee G$

Harsh Gandhi^{1*}, Jaydeep Parejiya², M M Jariya³ and Ramesh Solanki⁴

 ^{1*,3}Children's University, Gandhinagar - 382021, Gujarat (India), hrgmaths@gmail.com¹, mahesh.jariya@gmail.com³
²Goverment Polytechnic College, Rajkot - 360004, Gujarat (India), parejiyajay@gmail.com²
⁴Goverment Polytechnic College, Vyara - 394650, Gujarat (India), rameshsolanki_maths12@yahoo.com⁴

Abstract

All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected graph. A function $f : V(G) \rightarrow \{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^* : E(G) \rightarrow \{1,2\}$ defined by $f^*(uv) = \left\lfloor \frac{2f(u)f(v)}{f(u)+f(v)} \right\rfloor$ satisfies the condition $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for any $i, j \in \{1,2\}$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and number of edges with label x respectively and $\lfloor x \rfloor$ denotes the greatest integer less than or equals to x. A graph G is called a harmonic mean cordial graph if it admits harmonic mean cordial labeling. In this article, we have discussed the harmonic mean cordial labeling of One Chord $C_n \lor G$.

Keywords: Harmonic Mean Cordial Labeling, Complete graph, Cycle, One Chord Cycle, Join of two graphs. **MSC 2010 No.:** 05C78

1. INTRODUCTION

We begin with simple, finite, connected and undirected graph G = (V(G), E(G)). For terminology and notation not defined here we follow Balakrishnan and Ranganathan [1].

In [2] J. Gowri and J. Jayapriya defined Harmonic Mean Cordial labeling of graph *G*. Let G = (V(G), E(G)) be a simple undirected Graph. A function $f : V(G) \rightarrow \{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^* : E(G) \rightarrow \{1,2\}$ defined by $f^*(uv) = \left\lfloor \frac{2f(u)f(v)}{f(u)+f(v)} \right\rfloor$ satisfies the condition $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for any $i, j \in \{1,2\}$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and number of edges with label *x* respectively and [x] denotes the greatest integer less than or equals to *x*. A graph *G* is called a harmonic mean cordial graph if it admits harmonic mean cordial labeling. For the sake of convenience of the reader we use 'HMC' for harmonic mean cordial labeling and ' $C_{(1,n-1)}$ ' for One Chord Cycle Graph. It is useful to recall some useful definitions of graph theory to make this article self-contained. Motivated by the interesting results proved in [3, 4, 5] and on Root Cube Mean Cordial Labeling in [6], we have discussed HMC labeling of Harmonic Mean Cordial labeling of One Chord $C_n \vee G$.

Definition 1 [7] A Chord of a cycle C_n is an edge not in C_n whose endpoints lie in C_n .

Definition 2 [1] Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. Then union of G_1 and G_2 is denoted by $G_1 \cup G_2$ is the graphs whose vertex set is $V_1 \cup V_2$ and edge set is $E_1 \cup E_2$. When G_1 and G_2 are vertex disjoint $G_1 \cup G_2$ is called sum of G_1 and G_2 and it is denoted by $G_1 + G_2$.

Definition 3 [1] Let G_1 and G_2 be two vertex disjoint graphs. Then the join $G_1 \vee G_2$ of G_1 and G_2 is the super graph of G_1+G_2 in which each vertex of G_1 is also adjacent to every vertex of G_2 .

In Theorem 2.1, we have proved that the complete graph $K_n \vee C_{(1,m-1)}$ is not HMC for any $n,m \ge 2$ and $n,m \in \mathbb{N}$. In Theorem 2.2, we have proved that $C_{(1,m-1)} \vee C_{(1,n-1)}$ is not HMC for any $n,m \ge 2$ and $n,m \in \mathbb{N}$.

2. MAIN RESULTS

Proposition 2.1.

 $K_n \lor C_{(1,n-1)}$ is not HMC for $n \ge 2$.

Proof:

Suppose that $K_n \vee C_{(1,n-1)}$ is HMC. Note that, $|V(K_n \vee C_{(1,n-1)})| = 2n$ and $|E(K_n \vee C_{(1,n-1)})| = n\frac{(n-1)}{2} + n + n^2 + 1$. Since, $|V(K_n \vee C_{(1,n-1)})| = 2n$ and we have assume that $K_n \vee C_{(1,n-1)}$ is HMC. We have $v_f(1) = v_f(2) = n$.

Case 1: All the vertices of label 1 and label 2 are in sequence in $C_{(1,n-1)}$ Suppose that we have *r* number of vertices with label 1 in K_n . So, we have (n - r) vertices of of label 1 in $C_{(1,n-1)}$.

Hence, we have (n - r) vertices of label 2 in K_n and r vertices of label 2. in C we have (n - r) + nr + 1 and

2 in
$$C_{(1,n-1)}$$
. Note that, $e_f(1) = (n-r)r + r\frac{(r-1)}{2} + (n-r)^2 + (n-r+1) + nr+1$ and $e_f(2) = \frac{(n-r)(n-r-1)}{2} + r(n-r) + (r-1)$.

Now. $e_f(1) - e_f(2) = \frac{n^2}{2} + r^2 + \frac{3n}{2} - 3r + 3$. If $r \ge 3$ then as $n \ge 4$, we have $e_f(1) - e_f(2) > 1$. If r = 1 and r = 2 then $e_f(1) - e_f(2) = \frac{n^2}{2} + \frac{3n}{2} + 1 > 1$. So, $e_f(1) - e_f(2) > 1$.

Case 2: Some of the vertices of label 2 are not in sequence in $C_{(1, n-1)}$

Suppose that we have r number of vertices with label 1 in K_n . So, we have (n - r) vertices of label 1 in $C_{(1,n-1)}$. Hence, we have (n - r) vertices of label 2 in K_n and r vertices of label 2 in $C_{(1,n-1)}$. Suppose that there exist jnumber of vertices with label 2 are not in sequence in $C_{(1,n-1)}$. Then, we have $e_f(1) = \frac{r(r-1)}{2} + r(n-r) + rn + (n-r)^2 + (n-r+j+1)$ and

 $e_f(2) = (r - j - 1) + \frac{(n - r - 1)(n - r)}{2} + r(n - r)$ Now, $e_f(2)$ in case 2 ≤ $e_f(2)$ in case 1 and $e_f(1)$ in case 1 and $e_$

case $2 \ge e_f(1)$ in case 1. So, $e_f(1) - e_f(2)$ in this case $\ge e_f(1) - e_f(2)$ in case 1. Now, we have already proved in case 1 that $e_f(1) - e_f(2) > 1$.

Then, we have $e_f(1) = \frac{n(n-1)}{2} + n^2$ and $e_f(2) = n+1$. Then, $e_f(1) - e_f(2) = \frac{n(n-1)}{2} + n^2 - n - 1 = \frac{3n^2}{2} - \frac{3n}{2} - 1 > 1$ as $n^2 > n$.

Case 4: We have *n* number of vertices with label 2 in K_n and *n* number of vertices with label 1 in $C_{(1, n-1)}$ Then we have, $e_f(1) = n^2 + n + 1$ and $e_f(2) = \frac{n(n-1)}{2}$. Then, $e_f(1) - e_f(2) = n^2 + n + 1 - \frac{n(n-1)}{2} = n^2 + \frac{n($ $\frac{n^2}{2} + \frac{3n}{2} + 1 > 1$ Hence, $K_n \vee C_{(1,n-1)}$ is not HMC.

Proposition 2.2.

 $K_n \vee C_{(1,m-1)}$ is not HMC, where m + n is even and $m, n \ge 2$.

Proof:

Note that, $|V(K_n \vee C_{(1,m-1)})| = m + n$. Suppose that $K_n \vee C_{(1,m-1)}$ is Harmonic mean cordial. Then we have, $|v_f(1)| = \frac{m+n}{2} = |v_f(2)|$.

Case 1: All the vertices with label 1 and label 2 are in sequence in $C_{(1,m-1)}$ Suppose that we have *r* number of vertices with label 1 in K_n . So, we have $(\frac{m+n}{2} - r)$ vertices with label 1 in $C_{(1,m-1)}$. Hence, we have (n-r) vertices with label 2 in K_n and $m - (\frac{m+n}{2} - r) = (\frac{m-n}{2} + r)$ vertices with label 2 in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + rm + (n-r)(\frac{m+n}{2} - r) + (\frac{m+n}{2} - r + 1) + r(n-r)$ and $e_f(2) = \frac{(n-r)(n-r-1)}{2} + (n-r)(\frac{m-n}{2}+r) + (\frac{m-n}{2}+r-1) + 1$ $\mathrm{Then}_{}e_{f}(1) - e_{f}(2) = mr + \frac{n^{2}}{2} - nr + \frac{3n}{2} + r^{2} - 3r + 1 = (r - n)^{2}(\frac{1}{2}) + \frac{r^{2}}{2} + \frac{3n}{2} + 2 + r(m - 3) - 1$ Now, n > r. So, $e_f(1) - e_f(2) > 1$.

Case 2: Some of the vertices with label 2 are not in sequence in $C_{(1,m-1)}$ Suppose that we have *r* number of vertices with label 1 in K_n . So, we have $\left(\frac{m+n}{2} - r\right)$ vertices with label 1 in $C_{(1,m-1)}$. Hence, we have (n-r) vertices with label 2 in K_n and $m - \left(\frac{m+n}{2} - r\right) = \left(\frac{m-n}{2} + r\right)$ vertices with label 2 in $C_{(1,m-1)}$. Suppose that there exist j

number of vertices from $\left(\frac{m-n}{2}+r\right)$ with label 2 are not in sequence in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + r(n-r) + rm + (n-r)(\frac{m+n}{2}-r) + (\frac{m+n}{2}-r+j+1)$ and

 $e_f(2) = \frac{(n-r)(n-r-1)}{2} + (n-r)(\frac{m-n}{2} + r) + (\frac{m-n}{2} + r - j)$. Now, $e_f(2)$ in case 2 ≤ $e_f(2)$ in case 1 and $e_{f}(1)$ in case $2 \ge e_{f}(1)$ in case 1. So, $e_{f}(1) - e_{f}(2)$ in this case $\ge e_{f}(1) - e_{f}(2)$ in case 1. Now, we have already proved in case 1 that $e_f(1) - e_f(2) > 1$.

Case 3: *m* < *n*

Subcase 3.1: All the vertices in $C_{(1,m-1)}$ are with label 1

Suppose that we have *r* number of vertices with label 1 in K_n . So, we have (n - r) vertices with label 2 in K_n . Then we have, $e_f(1) = \frac{r(r-1)}{2} + mn + m + r(n-r) + 1$ and $e_f(2) = \frac{(n-r)(n-r-1)}{2}$. Then, $e_f(1) - e_f(2) = mn + m + 2nr + \frac{n}{2} - r^2 - r - \frac{n^2}{2}$. We know that, $r = \frac{m+n}{2}$. Then $e_f(1) - e_f(2) = \frac{3mn}{2} + \frac{m}{2} + (\frac{n^2}{4} - \frac{m^2}{4}) + 1$. We know that n > m. So, $e_f(1) - e_f(2) > 1$.

Subcase 3.2: All the vertices in $C_{(1,m-1)}$ are with label 2

Suppose that we have *r* number of vertices with label 1 in K_n . So, we have (n - r) vertices with label 2 in K_n . Then we have, $e_f(1) = \frac{r(r-1)}{2} + rm + r(n-r) \operatorname{and} e_f(2) = \frac{(n-r)(n-r-1)}{2} + m(n-r) + m + 1$.

Then, $e_f(1) - e_f(2) = m(n-r) + mr - m - \frac{n^2}{2} + 2nr + \frac{n}{2} - r^2 - r - 1$. We know that, $r = \frac{m+n}{2}$. Then, $e_f(1) - e_f(2) = \frac{mn}{2} + \frac{3m^2}{4} + \frac{n^2}{4} - \frac{3m}{2} - 1$ as $m \ge 2$. So, $e_f(1) - e_f(2) > 1$.

Case 4: *m* > *n*

Subcase 4.1: All the vertices in K_n are with label 1

Suppose that we have r number of vertices with label 1 in $C_{(1,m-1)}$. So, we have (m - r) vertices with label 2 in $C_{(1,m-1)}$.

Subsubcase 4.1.1: All the vertices with label 2 are in sequence in $C_{(1,m-1)}$

Then we have, $e_f(1) = \frac{n(n-1)}{2} + (r+1) + nm$ and $e_f(2) = m - r$. Then, $e_f(1) - e_f(2) = m$ $\frac{n(n-1)}{2} + (r+1) + nm - m + r$. We know that, nm > m. So, $e_{f}(1) - e_{f}(2) > 1$.

Subsubcase 4.1.2: Some of the vertices with label 2 are not in sequence in $C_{(1,m-1)}$ Suppose that we have j number of vertices with label 2 are not in sequence in $C_{(1,m-1)}$. Suppose that j number

of vertices are not *j* sequence. Then we have, $e_f(1) = \frac{n(n-1)}{2} + nm + r + j$ and $e_f(2) = m - r - j + 1$. Now, $e_{f}(2)$ in subsubcase 4.1.2 $\leq e_{f}(2)$ in subsubcase 4.1.1 and $e_{f}(1)$ in subsubcase 4.1.2 $\geq e_{f}(1)$ in subsubcase 4.1.1. So, $e_f(1) - e_f(2)$ in this case $\ge e_f(1) - e_f(2)$ in subsubcase 4.1.1. Now, we have already proved in subsubcase 4.1.1 that $e_f(1) - e_f(2) > 1$.

Subcase 4.2: All the vertices in *K_n* are with label 2

Suppose that we have r number of vertices with label 1 in $C_{(1,m-1)}$. So, we have (m - r) vertices with label 2 in $C_{(1,m-1)}$.

Subsubcase 4.2.1: All the vertices with label 2 are in sequence in $C_{(1,m-1)}$ Then we have, $e_f(1) = (r+1) + nr + 1$ and $e_f(2) = \frac{n(n-1)}{2} + (m-r-1) + n(m-r)$. Then, $e_f(1) - e_f(2) = (r+1) + rn + 1 - \frac{n(n-1)}{2} - m + r + 1 - mn + rn$. We know that, $r = \frac{m+n}{2}$. Then $e_f(1) - e_f(2) = \frac{n^2}{2} + \frac{3n}{2} + 3 > 1$

Subsubcase 4.2.2: Suppose that some of the vertices with label 2 are not in sequence in $C_{(1,m-1)}$

Then we have, $e_{f}(1) = m + m$ and $e_{f}(2) = \frac{n(n-1)}{2} + (m-r)n + 1$. Now, $e_{f}(2)$ in subsubcase $4.2.2 \le e_f(2)$ in subsubcase 4.2.1 and $e_f(1)$ in subsubcase $4.2.2 \ge e_f(1)$ in subsubcase 4.2.1. So, $e_f(1) - e_f(2)$ in this case is $\ge e_f(1) - e_f(2)$ in subsubcase 4.2.1. Now, we have already proved in subsubcase 4.2.1 that $e_f(2) - e_f(2) = e_f(2) + e_$ $e_{f}(2) > 1$. Hence, $e_{f}(2) - e_{f}(2) > 1$ in this case.

Hence, $K_n \vee C_{(1,m-1)}$ is not HMC, where m + n is even and $m, n \ge 2$.

Proposition 2.3.

 $K_n \vee C_{(1,m-1)}$ is not HMC, where m + n is odd and $m, n \ge 2$.

Proof:

Note that, $|V(K_n \vee C_{(1,m-1)}| = m + n$. Suppose that $K_n \vee C_{(1,m-1)}$ is HMC. **Case 1: All the vertices with label 1 and label 2 in** C_m are in sequence in $C_{(1,m-1)}$. In this case we have two possibilities (i) $v_f(1) = \frac{m+n+1}{2}$ and $v_f(2) = \frac{m+n-1}{2}$ (ii) $v_f(1) = \frac{m+n-1}{2}$ and $v_f(2) = \frac{m+n+1}{2}$. So, we consider the following cases. **Subcase 1.1:** $v_f(1) = \frac{m+n+1}{2}$ and $v_f(2) = \frac{m+n-1}{2}$.

Suppose that we have *r* number of vertices with label 1 in K_n . So, we have $\left(\frac{m+n+1}{2}-r\right)$ vertices of label 1 in $C_{(1,m-1)}$. Hence, we have (n-r) vertices with label 2 in K_n and $m - \left(\frac{m+n+1}{2}-r\right) = \left(\frac{m-n-1}{2}+r\right)$ vertices with label 2 in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + rn + r(n-r) + \frac{m+n+1}{2} - r + 1 + \left(n-r\left(\frac{m+n+1}{2}-r\right)+1\right)$ and $e_f(2) = \frac{(n-r)(n-r-1)}{2} + (n-r)\left(\frac{m-n-1}{2}+r\right) + \frac{m-n-1}{2} + r - 1$. Then $e_f(1) - e_f(2) = \frac{n^2}{2} + \frac{5n}{2} + r^2 - 4r + 4 > 1$ as n > r. Subcase 1.2: $v_f(1) = \frac{1}{2} a_{nd} v_f(2) = \frac{m+n+1}{2}$

Suppose that we have *r* number of vertices with label 1 in K_n . So, we have $\left(\frac{m+n-1}{2} - r\right)$ vertices of label 1 in $C_{(1,m-1)}$. Hence, we have (n-r) vertices with label 2 in K_n and $m - \left(\frac{m+n-1}{2} - r\right) = \left(\frac{m-n+1}{2} + r\right)$ vertices with Then $e_f(1) - e_f(2) = r^2 + \frac{n^2}{2} + \frac{n}{2} + mr - 2r - nr > 1$ as $n \ge 2$ 2451

Case 2: Some of the vertices with label 2 are not in sequence in $C_{(1,m-1)}$

Subcase 2.1: Suppose that $v_f(1) = \frac{m+n+1}{2}$ and $v_f(2) = \frac{m+n-1}{2}$

Suppose that we have *r* number of vertices with label 1 in K_n . So, we have $\left(\frac{m+n+1}{2} - r\right)$ vertices of label 1 in $C_{(1,m-1)}$. Hence, we have (n-r) vertices with label 2 in K_n and $m - \left(\frac{m+n+1}{2} - r\right) = \left(\frac{m-n-1}{2} + r\right)$ vertices with label 2 in $C_{(1,m-1)}$. Suppose that there exist *j* number of vertices from $\left(\frac{m-n-1}{2} + r\right)$ with label 2 are not in sequence in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + rm + r(n-r) + \left(\frac{m+n+1}{2} - r + j + 1\right) + (n-r)\left(\frac{m+n+1}{2} - r\right)_{and} e_f(2) = \left(\frac{m-n-r}{2} - r - j - 1\right) + \frac{m+n+1}{2} - r + j + 1$

 $\frac{(n-r)(n-r-1)}{2} + (n-r)(\frac{m-n-1}{2}+r). \text{ Now, } e_f(2) \text{ in subcase } 2.1 \le e_f(2) \text{ in subcase } 1.1 \text{ and } e_f(1) \text{ subcase } 2.1 \ge e_f(1) \text{ in subcase } 1.1. \text{ So, } e_f(1) - e_f(2) \text{ in this case } \ge e_f(1) - e_f(2) \text{ in subcase } 1.1. \text{ Now, we have already proved in subcase } 1.1 \text{ that } e_f(1) - e_f(2) > 1. \text{ Subcase } 2.2: v_f(1) = \frac{m+n-1}{2} \text{ and } v_f(2) = \frac{m+n+1}{2}$

Suppose that we have *r* number of vertices with label 1 in K_n . So, we have $\left(\frac{m+n-1}{2} - r\right)$ vertices of label 1 in $C_{(1,m-1)}$. Hence, we have (n-r) vertices with label 2 in K_n and $m - \left(\frac{m+n-1}{2} - r\right) = \left(\frac{m-n+1}{2} + r\right)$ vertices with label 2 in $C_{(1,m-1)}$. Suppose that there exist *j* number of vertices from $\left(\frac{m-n+1}{2} + r\right)$ with label 2 are not in sequence in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + rm + r(n-r) + \left(\frac{m+n-1}{2} - r + j + 1\right) + (n-r)\left(\frac{m+n-1}{2} - r\right)_{and} e_f(2) = \left(\frac{m-n+1}{2} + r - j - 1\right) + \frac{(n-r)(n-r-1)}{2} + (n-r)\left(\frac{m-n+1}{2} + r\right)$ Now e(2) in subcase 2.2 ≤ e(2) in subcase 1.2 and e(1)

 $\frac{(n-r)(n-r-1)}{2} + (n-r)(\frac{m-n+1}{2}+r)$. Now, $e_f(2)$ in subcase $2.2 \le e_f(2)$ in subcase 1.2. and $e_f(1)$ subcase $2.2 \ge e_f(1)$ in subcase 1.2. So, $e_f(1) - e_f(2)$ in this case $\ge e_f(1) - e_f(2)$ in subcase 2.1. Now, we have already proved in subcase 2.1 that $e_f(1) - e_f(2) > 1$. **Case 3:** m < n

Subcase 3.1: All the vertices in $C_{(1,m-1)}$ are with label 1 and some vertices with label 1 are in K_n

Suppose that there exist *r* number of vertices with label 1 in K_n . So, there exists (n - r) vertices with label 2 in K_n . Suppose that we have *m* number of vertices with label 1 in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + r(n-r) + mn + m + 1$ and $e_f(2) = \frac{(n-r)(n-r-1)}{2}$. Then, $e_f(1) - e_f(2) = \frac{r(n-r)(n-r-1)}{2}$.

 $mn + m + 2nr + 1 + \frac{n}{2} - r - r^2 - \frac{n^2}{2}$

In this case we have two possibilities m + n + 1

(i)
$$m + r = \frac{m + n + 1}{2}$$

(ii) $m + r = \frac{m + n - 1}{2}$

So, we consider the following cases.

Subsubcase 3.1.1: $m + r = \frac{m+n+1}{2}$

Therefore, $r = \frac{n-m+1}{2}$. Then, $e_f(1) - e_f(2) = \frac{mn}{2} + (2m - \frac{3}{4}) + (\frac{n^2}{4} - \frac{m^2}{4}) + \frac{n}{2} > 1$ as $m < n_{\text{and}} = 2m > \frac{3}{4}$ as $m \ge 2$.

Subsubcase 3.1.2:
$$m + r = \frac{m+n-1}{2}$$

Then refore,
$$r = \frac{n-m-1}{2}$$
. Then, $e_f(1) - e_f(2) = (\frac{mn}{2} - \frac{n}{2}) + m + (\frac{n^2}{4} - \frac{m^2}{4}) + \frac{1}{4} > 1$ as $n > m$.

Subcase 3.2: All the vertices in $C_{(1,m-1)}$ are with label 2 and some vertices with label 2 are in K_n Suppose that there exist r numbers of vertices with label 1 in K_n . So, there exists (n - r) vertices with label 2 in K_n . Suppose that we have m number of vertices with label 2 in $C_{(1,m-1)}$. Then we have, $e_f(1) = \frac{r(r-1)}{2} + r(n-r) + rm_{and}e_f(2) = \frac{(n-r)(n-r-1)}{2} + m(n-r) + m_{.}$ Then, $e_f(1) - e_f(2) = 2mr - mn - \frac{n^2}{2} + 2nr + \frac{n}{2} - r^2 - r - m_{.}$

Subsubcase 3.2.1: $r = \frac{m+n+1}{2}$ Then, $e_f(1) - e_f(2) = \frac{3m^2}{4} + (\frac{mn}{2} - m) + (\frac{n^2}{4} - \frac{3}{4}) + \frac{n}{2} > 1$ as $m, n \ge 2$. Subsubcase 3.2.2: $r = \frac{m+n-1}{2}$ Then, $e_f(1) - e_f(2) = \frac{3m^2}{4} + \frac{mn}{2} - 2m + \frac{n^2}{4} + \frac{1}{4} - \frac{n}{2} = (\frac{n^2}{4} - \frac{n}{2}) + m(\frac{3m}{4} + \frac{n}{2} - 2) + \frac{1}{4} > 1$ as $m, n \ge 2$. ≥ 2 .

Case 4: m > n and all the vertices with label 2 are in sequence in $C_{(1,m-1)}$

Subcase 4.1: All the vertices in K_n are with label 1 and some vertices with label 1 are in $C_{(1,m-1)}$ 2452

Suppose that there exist r number of vertices with label 1 in $C_{(1,m-1)}$. So, there exists (m - r) vertices with label 2 in $C_{(1,m-1)}$. Suppose that we have *n* number of vertices with label 1 in K_n .

Then we have, $e_f(1) = mn + (r+1) + n\frac{(n-1)}{2}$ and $e_f(2) = m - r$. Then, $e_f(1) - e_f(2) = (mn - m) + 2r + (\frac{n^2}{2} - \frac{n}{2}) + 1 > 1$ as mn > m and $\frac{n^2}{2} > \frac{n}{2}$, where, $m, n \ge 2$.

Subcase 4.2: All the vertices in K_n are with label 2 and some vertices with label 2 are in $C_{(1,m-1)}$ Suppose that there exist r number of vertices with label 1 in $C_{(1,m-1)}$. So, there exists (m - r) vertices with label 2 in $C_{(1,m-1)}$. Suppose that we have *n* number of vertices with label 2 in K_n .

Then we have,
$$e_f(1) = rn + (r + 1) + 1$$
 and $e_f(2) = \frac{n(n-1)}{2} + n(m-r) + (m-r-1)$. Then, $e_f(1) - e_f(2) = 2r + 2nr - \frac{n^2}{2} + \frac{n}{2} - mn - m + 3$.
Subsubcase 4.2.1: $r = \frac{m+n+1}{2}$

 $\begin{aligned} & \text{Then,} e_f(1) - e_f(2) = \frac{5n}{2} + \frac{n^2}{2} + 4 > 1 \\ & \text{Subsubcase 4.2.2:} \ r = \frac{m+n-1}{2} \\ & \text{Then,} e_f(1) - e_f(2) = \frac{n^2}{2} + \frac{n}{2} + 2 > 1 \end{aligned}$

Case 5: m > n and some of the vertices with label 2 are not in sequence in $C_{(1,m-1)}$

Subcase 5.1:All the vertices in K_n are with label 1 and some vertices with label 1 are in $C_{(1,m-1)}$ Suppose that there exist r number of vertices with label 1 in $C_{(1,m-1)}$. So, there exists (m - r) vertices with label

2 in $C_{(1,m-1)}$. Suppose that we have *n* number of vertices with label 1 in K_n . Suppose that we have *j* number of vertices with label 2 are not in sequence in $C_{(1,m-1)}$. Then, $e_f(1) = \frac{n(n-1)}{2} + mn + (r+j+1)$ and $e_f(2) = m$ -r - j. Now, $e_f(2)$ in subcase $5.1 \le e_f(2)$ in

subcase 4.1 and $e_f(1)$ in subsubcase 5.1 $\ge e_f(1)$ in subsubcase 4.1. So, $e_f(1) - e_f(2)$ in this case is $\ge e_f(1) - e_f(2)$ in subcase 4.1. Now, we have already proved in subcase 4.1 that $e_1(1) - e_1(2) > 1$. Hence, $e_1(1) - e_1(2) > 1$ in this case.

Subcase 5.2: All the vertices in K_n are with label 2 and some vertices with label 2 are in $C_{(1,m-1)}$

Suppose that there exist r number of vertices with label 1 in $C_{(1,m-1)}$. So, there exists (m - r) vertices with label 2 in $C_{(1,m-1)}$. Suppose that we have *n* number of vertices with label 2 in K_n . Suppose that we have *j* number of vertices with label 2 are not in sequence in $C_{(1,m-1)}$. Then $e_f(1) = nr + (r + j + 1)$ and $e_f(2) = \frac{n(n-1)}{2} + mn + m - nr - r - j$. Now, $e_f(2)$ in subcase 5.2

 $\leq e_{f}(2)$ in subcase 4.2 and $e_{f}(1)$ in subsubcase $5.2 \geq e_{f}(1)$ in subsubcase 4.2. So, $e_{f}(1) - e_{f}(2)$ in this case is \geq $e_{f}(1) - e_{f}(2)$ in subcase 4.2. Now, we have alredy proved in subcase 4.2 that $e_{f}(1) - e_{f}(2) > 1$. Hence, $e_{f}(1) - e_{f}(2) > 1$. $e_{f}(2) > 1$ in this case.

Hence, $K_n \vee C_{(1,m-1)}$ is not HMC, where m + n is odd and $m, n \ge 2$.

Theorem 2.1. $K_n \lor C_{(1,m-1)}$ is not HMC, where $m,n \ge 2, m,n \in \mathbb{N}$.

Proof:

Proof follows from Propositions 2.1, 2.2 and 2.3.

Proposition 2.4.

 $C_{(1,m-1)} \vee C_{(1,n-1)}$ is not HMC, where m = n and $m \ge 2$.

Proof:

Suppose that $C_{(1,m-1)} \vee C_{(1,n-1)}$ is HMC for m = n. Note that, $|V(C_{(1,m-1)} \vee C_{(1,n-1)})| = 2n$ and $|E(C_{(1,m-1)} \vee C_{(1,n-1)})|$ $= n + m + nm + 2 = 2 + 2n + n^2$ as n = m. Since, $|V(C_{(1,m-1)} \vee C_{(1,m-1)})| = m + n = 2n$ as n = m. We have assume that $C_{(1,m-1)} \vee C_{(1,n-1)}$ is HMC for n = m. We have $v_f(1) = v_f(2) = n$.

Case 1: All the vertices of label 1 are in sequence in $C_{(1,m-1)}$ and $C_{(1,n-1)}$

Then, it is clear that all the vertices of label 2 are in sequence in $C_{(1,m-1)}$ and $C_{(1,n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1,n-1)}$. So, we have (n-r) vertices of of label 1 in $C_{(1,n-1)}$. Hence, we have (m-r) vertices of label 2 in $C_{(1,m-1)}$ and r vertices of label 2 in $C_{(1,n-1)}$. Note that, $e_f(1) = (r+1) + (n-r+1) + rn$ +(n-r)n + 1 and $e_{f}(2) = (n-r-1) + (r-1) + r(n-r) + 1$. Then, $e_{f}(1) - e_{f}(2) = 2n + 2 + rn + n^{2} - r^{2}$. We know that, n > r. So, $e_f(1) - e_f(2) > 1$.

Case 2: Some of the vertices of label 2 are not in sequence in $C_{(1,m-1)}$ and $C_{(1,n-1)}$

Suppose that we have r number of vertices with label 1 in $C_{(1,m-1)}$. So, we have (n - r) vertices of label 1 in $C_{(1,n-1)}$. Hence, we have (m - r) vertices of label 2 in $C_{(1,m-1)}$ and r vertices of label 2 in $C_{(1,n-1)}$. Suppose that there exist *i* number of vertices with label 2 are not in sequence in $C_{(1,m-1)}$ and *j* number of vertices with label 2 are not in sequence in $C_{(1,n-1)}$. Note that, $e_f(1) = (r+i+1)+(n-r+j+1)+rn+(n-r)m+1$ and $e_f(2) = (r+i+1)+(n-r+j+1)+rn+(n-r)m+1$ (n-r-i-1)+(r-j-1)+r(n-r)+1. Now, $e_{f}(2)$ in case $2 \le e_{f}(2)$ in case 1 and $e_{f}(1)$ in case $2 \ge e_{f}(1)$ in case 1. So, $e_{f}(1)$

 $-e_{f}(2)$ in this case is $\geq e_{f}(1) - e_{f}(2)$ We have already proved in case 1 that $e_{f}(1) - e_{f}(2) > 1$. Hence, $e_{f}(1) - e_{f}(2)$ > 1 in this case.

Case 3: We have *m* number of vertices with label 1 in $C_{(1,m-1)}$ and *n* number of vertices with label 2 in **C**_(1,n-1)

Note that, $e_{f}(1) = mn+m+1$ and $e_{f}(2) = n+1$. Then, $e_{f}(1)-e_{f}(2) = mn+m+1-1-n = mn > 1$ as n = m. Case 4: We have m number of vertices with label 2 in $C_{(1,m-1)}$ and n number of vertices with label 1 in $C_{(1,n-1)}$

Note that, $e_n(1) = mn+n+1$ and $e_n(2) = m+1$. Then, $e_n(1)-e_n(2) = mn+n+1-m-1 = mn > 1$ as n = m. Hence, $C_{(1,m-1)}$ $\vee C_{(1,n-1)}$ is not HMC, where m = n and $m \ge 2$.

Proposition 2.5.

 $C_{(1,m-1)} \vee C_{(1,n-1)}$ is not HMC, where m + n is even and $m, n \ge 2$.

Proof:

Note that, $|V(C_{(1,m^{-1})} \vee C_{(1,n^{-1})})| = n + m$. Suppose that $C_{(1,m^{-1})} \vee C_{(1,n^{-1})}$ is HMC. Since we have $|v_f(1)| = \frac{n+m}{2} = |v_f(2)|$.

Case 1: All the vertices of label 1 and 2 are in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$

Suppose that we have r number of vertices with label 1 in $C_{(1,n-1)}$. So, we have (n - r) vertices of of label 2 in $C_{(1,m-1)}$. Hence, we have $\frac{n+m}{2} - r$ vertices of label 1 in $C_{(1,m-1)}$ and $m - \frac{n+m}{2} + r$

vertices of label 2 in
$$C_{(1,m-1)}$$
. Note that, $e_f(1) = (r+1) + (\frac{n+m}{2} - r+1) + rm + (\frac{n+m}{2} - r)(n-r) + 1$
and $e_f(2) = (n-r-1) + (m - \frac{n+m}{2} + r - 1) + (n-r)(m - \frac{n+m}{2} + r) + 1$. Then, $e_f(1) - e_f(2) = mr + 4 + r^2 - 2mr + 2r^2$. We know that $r = \frac{m+n}{2}$. So we have $e_f(1) - e_f(2) > 1$.

 $n^2 - 3nr + 2r^2$. We know that $\overline{2}$, So, we have $e_f(1) - e_f(2) > 1$.

Case 2: Some of the vertices of label 2 are not in sequence in $C_{(1,n-1)}$ and $C_{(1,n-1)}$

Suppose that we have *r* number of vertices with label 1 in $C_{(1,n-1)}$. So, we have $\frac{n+m}{2}$ $C_{(1,m-1)}$. Hence, we have (n - r) vertices of label 2 in $C_{(1,n-1)}$ and $(m - \frac{n+m}{2} + r)$ -rvertices of label 1 in

vertices of label 2 in $C_{(1,m-1)}$. Suppose that there exist *i* number of vertices with label 2 are not in sequence in $\begin{array}{l} \textbf{C}_{(1,n-1)} \text{ and } j \text{ number of vertices with label 2 are not in sequence in } \textbf{C}_{(1,m-1)}. \text{ Note that, } e_f(1) = (r+i+1) + (\frac{n+m}{2} - r+j+1) + rm + (n-r)(\frac{n+m}{2} - r) + 2 \text{ and } e_f(2) = (n-r-i-1) + (m-\frac{n+m}{2} + r-j-1) + (n-r)(m-\frac{n+m}{2} + r). \text{ Now, } e_f(2) \text{ in case } 2 \leq e_f(2) \end{array}$

in case 1 and $e_f(1)$ in case $2 \ge e_f(1)$ in case 1. So, $e_f(1) - e_f(2)$ in this case is $\ge e_f(1) - e_f(2)$ in case 1. Now, we have already proved in case 1 that $e_{f}(1) - e_{f}(2) > 1$. Hence, in this case $e_{f}(1) - e_{f}(2) > 1$.

Case 3: *m* > *n*

Subcase 3.1: All the vertices in $C_{(1,n-1)}$ are with label 1

So, we have n number of vertices with label 1 in $C_{(1,n-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1,m-1)}$. So, there exist m - r number of vertices with label 2 in $C_{(1,m-1)}$.

Subsubcase 3.1.1:All the vertices in $C_{(1,m-1)}$ are in sequence

Then, $e_{f}(1) = (n+1)+(r+1)+mn$ and $e_{f}(2) = m-r$. Then, $e_{f}(1)-e_{f}(2) = mn-m+n+2 > 1$ as mn > m, n.

Subsubcase 3.1.2: All the vertices with label 2 are not in sequence in $C_{(1,m-1)}$

Suppose that we have *i* number of vertices from (m - r) number of vertices are not in sequence in $C_{(1,m-1)}$. Then, $e_{f}(1) = n + (r + i + 1) + mn + 2$ and $e_{f}(2) = m - r - i - 1$. Now, $e_{f}(2)$ in subsubcase $3.1.2 \le e_{f}(2)$ in subsubcase 3.1.1 and $e_f(1)$ in subsubcase 3.1.2 $\geq e_f(1)$ in subsubcase 3.1.1. So, $e_f(1) - e_f(2)$ in this case \geq $e_{f}(1) - e_{f}(2)$ in subsubcase 3.1.1. Now, we have already proved in subsubcase 3.1.1 that $e_{f}(1) - e_{f}(2) > 1$. Hence, $e_f(1) - e_f(2) > 1$ in this case.

Subcase 3.2: All the vertices in $C_{(1,n-1)}$ are with label 2

So, we have *n* number of vertices with label 2 in $C_{(1,n-1)}$. Suppose that we have *r* number of vertices with label 1 in $C_{(1,m-1)}$. So, there exist m - r number of vertices with label 2 in $C_{(1,m-1)}$.

Subsubcase 3.2.1: All the vertices in $C_{(1,n-1)}$ are in sequence

Then, $e_{f}(1) = r + 2 + rn$ and $e_{f}(2) = n + m - r$. Then, $e_{f}(1) - e_{f}(2) = rn + 2r + 2 - n - m$.

We know that $r = \frac{n+m}{2}$. So, $e_f(1) - e_f(2) > 1$.

Subsubcase 3.2.2: All the vertices in $C_{(1,n-1)}$ are not in sequence

Suppose that we have *i* number of vertices from (n - r) number of vertices are not in sequence in $C_{(1,m-1)}$. Then, $e_{f}(1) = r + i + 1 + rn + 2$ and $e_{f}(2) = m - r - i - 2 + n + n(m - r)$. Now, $e_{f}(2)$ in subsubcase $3.2.2 \le e_{f}(2)$ in subsubcase 3.2.1 and $e_f(1)$ in subsubcase $3.2.2 \ge e_f(1)$ in subsubcase 3.2.1. so, $e_f(1)-e_f(2)$ in this case \ge $e_{f}(1) - e_{f}(2)$ in subsubcase 3.2.1. Now, we have already proved in subsubcase 3.2.1 that $e_{f}(1) - e_{f}(2) > 1$. Hence, $e_{f}(1) - e_{f}(2) > 1$ in this case.

Hence, $C_{(1,m-1)} \vee C_{(1,n-1)}$ is not HMC, where n + m is even and $m, n \ge 2$.

Proposition 2.6.

 $C_{(1,m-1)} \vee C_{(1,n-1)}$ is not HMC, where m + n is odd and $m, n \ge 2$.

Proof:

Note that, $|V(C_{(1,m-1)} \lor C_{(1,n-1)})| = n+m = 2k+1$ where $k \in \mathbb{N}$. Suppose that $C_{(1,m-1)} \lor C_{(1,n-1)}$ is HMC. Without loss of generality, we may assume that m > n.

In this case we have two possibilities. $(i)v_f(1) = \frac{m+n+1}{2}$ and $v_f(2) = \frac{m+n-1}{2}(ii)v_f(1) = \frac{m+n-1}{2}$ and $v_f(2) = \frac{m+n+1}{2}$

So, we consider the following cases.

Case 1: $v_f(1) = \frac{n+m+1}{2} = k+1$ and $v_f(2) = \frac{n+m-1}{2} = k$

Subcase 1.1: All the vertices of label 1 are in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$

Then, it is clear that all the vertices of label 2 are in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1,n-1)}$. So, we have (n-r) vertices of of label

2 in C_(1,n-1). Hence, we have (k + 1 - r) vertices of label 1 in C_(1,m-1) and (k - n + r) vertices of label 2 in C_(1,m-1). Note that, $e_f(1) = (r + 1) + (k + 2 - r) + rm + (k + 1 - r)(n - r) + 1$ and $e_f(2) = (n - r - 1) + (k - n + r - 1) + (n - r)(k - n + r) + 1$. Then, $e_f(1) - e_f(2) = (n - r)^2 + 5 + rm + (n - r)(1 - r) = (n - r)(n + 1 - 2r) + rm + 5$. Now, $e_f(1) - e_f(2) > 1$ if $n + 1 \ge 2r$. If $n + 1 \le 2r$, then $\frac{(n+1)}{2} < r$. Now, $r + k = \frac{m+n+1}{2} > \frac{(n+r)}{2} + k$. Therefore, m > k. Suppose that $r = \frac{(n+1)}{2} + l$. Then, $e_f(1) - e_f(2) = 2l^2 + 2l + \frac{1}{2} + lm + 5 > 1$.

Subcase 1.2: Some of the vertices of label 2 are not in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$

Suppose that we have r number of vertices with label 1 in $C_{(1,n-1)}$. So, we have (n - r) vertices of label 2 in $C_{(1,n-1)}$. Hence, we have (k - r) vertices of label 1 in $C_{(1,m-1)}$ and (k + 1 - n + r) vertices of label 2 in $C_{(1,m-1)}$. Suppose that there exist I number of vertices with label 2 are not in sequence in $C_{(1,n-1)}$ and j number of vertices with label 2 are not in sequence in $C_{(1,m-1)}$. Note that, $e_f(1) = (r + l + 1) + (k - r + j + 2) + rm + (n - r)(k + 1 - r)$ + 2 and $e_{f}(2) = (n - r - l - 1) + (k - n + r - j - 1) + (n - r)(k - n + r)$. Now, $e_{f}(2)$ in subcase $1.2 \le e_{f}(2)$ in subcase 1.1 and $e_f(1)$ in subcase $1.2 \ge e_f(1)$ in subcase 1.1. So, $e_f(1) - e_f(2)$ in this case is $\ge e_f(1) - e_f(2)$ in subcase 1.1. Now, we have already proved in subcase 1.1 that $e_f(1) - e_f(2) > 1$.

Hence,
$$e_f(1) - e_f(2) > 1$$
 in this case.

Case 2:
$$v_f(1) = \frac{n+m-1}{2} = k_{and}v_f(2) = \frac{n+m+1}{2} = k+1$$

Subcase 2.1: All the vertices of label 1 are in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$

Then, it is clear that all the vertices of label 2 are in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$. Suppose that we have r number of vertices with label 1 in $C_{(1,n-1)}$. So, we have (n - r) vertices of label

2 in $C_{(1,n-1)}$. Hence, we have (k + 1 - r) vertices of label 1 in $C_{(1,m-1)}$ and (k - n + r) vertices of label 2 in $C_{(1,m-1)}$. Note that, $e_{f}(1) = (r + 1) + (k + 1 - r) + rm + (k - r)(n - r) + 1$ and $e_{f}(2) = (n - r - 1) + (k - n + r) + (n - r)(k - n + r)$ +r+1 + 1. Then, $e_{f}(1) - e_{f}(2) = (n-r)^{2} + 3 + rm + (r-n)(1+r) = (n-r)(n-1-2r) + rm + 3$. Now, $e_{f}(1) - e_{f}(2)$ > 1

if $n \ge 1 + 2r$. If n < 1 + 2r, then $\frac{(n-1)}{2} < r$. Now, $r + k = \frac{m+n-1}{2} > \frac{(n-r)}{2} + k$. Therefore, m > k. Suppose that $r = \frac{(n-1)}{2} + l$. Then, $e_f(1) - e_f(2) = (\frac{mn}{2} - \frac{m}{2}) + 3 + l(m - n - 1) > 1$, if $m \ge n + 1$. Suppose that $m \le n + 1$. Then since, $m \ge n$, we have m = n + 1. So, we have $e_f(1) - e_f(2) = \left(\frac{mn}{2} - \frac{m}{2}\right) + 3 + l(m - n - 1) = \left(\frac{mn}{2} - \frac{m}{2}\right) + 3 > 1$.

Subcase 2.2: Some of the vertices of label 2 are not in sequence in $C_{(1,n-1)}$ and $C_{(1,m-1)}$

Suppose that we have r number of vertices with label 1 in $C_{(1,n-1)}$. So, we have (n - r) vertices of label 2 in $C_{(1,n-1)}$. Hence, we have (k - r) vertices of label 1 in $C_{(1,m-1)}$ and (k + 1 - n + r) vertices of label 2 in $C_{(1,m-1)}$. Suppose that there exist I number of vertices with label 2 are not in sequence in $C_{(1,n-1)}$ and j number of vertices with label 2 are not in sequence in $C_{(1,m-1)}$.

(n-r)(k-n+r+1). Now, $e_f(2)$ in subcase $2.2 \le e_f(2)$ in subcase 2.1 and $e_f(1)$ in subcase $2.2 \ge e_f(1)$ in subcase 2.1. So, $e_{f}(1) - e_{f}(2)$ in this case is $\geq e_{f}(1) - e_{f}(2)$ in subcase 2.1. Now, we have already proved in subcase 2.1 that $e_f(1) - e_f(2) > 1$. Hence, $e_f(1) - e_f(2) > 1$ in this case.

Case 3: *m* > *n*

Subcase 3.1: All the vertices in $C_{(1,n-1)}$ are with label 1

So, we have *n* number of vertices with label 1 in $C_{(1,n-1)}$. Suppose that we have *r* number of vertices with label 1 in $C_{(1,m-1)}$. So, there exist m - r number of vertices with label 2 in $C_{(1,m-1)}$.

Subsubcase 3.1.1: All the vertices in $C_{(1,m-1)}$ are in sequence

Then, $e_{f}(1) = n + (r + 1) + mn + rn + 1$ and $e_{f}(2) = m - r$. Then, $e_{f}(1) - e_{f}(2) = (mn - m) + n + 2r + rn + 2 > 1$ as mn > m.

Subsubcase 3.1.2: All the vertices with label 2 are not in sequence in $C_{(1,m-1)}$

Suppose that we have I number of vertices from (m - r) number of vertices are not in sequence in $C_{(1,m-1)}$. Then, $e_{f}(1) = n + (r + l + 1) + mn + 2$ and $e_{f}(2) = m - r - l - 1$. Now, $e_{f}(2)$ in subsubcase $3.1.2 \le e_{f}(2)$ in 2455

subsubcase 3.1.1 and $e_f(1)$ in subsubcase 3.1.2 $\ge e_f(1)$ in subsubcase 3.1.1. So, $e_f(1)-e_f(2)$ in this case is $\ge e_f(1)-e_f(2)$ in subsubcase 3.1.1. Now, we have already proved in subsubcase 3.1.1 that $e_f(1) - e_f(2) > 1$. Hence, $e_f(1) - e_f(2) > 1$ in this case.

Subcase 3.2: All the vertices in $C_{(1,n-1)}$ are with label 2

So, we have *n* number of vertices with label 2 in $C_{(1,n-1)}$. Suppose that we have *r* number of vertices with label 1 in $C_{(1,m-1)}$. So, there exist m - r number of vertices with label 2 in $C_{(1,m-1)}$.

Subsubcase 3.2.1: All the vertices in $C_{(1,n-1)}$ are in sequence

Then, $e_t(1) = r + 2 + rn$ and $e_t(2) = n + m - r$. Then, $e_t(1) - e_t(2) = nr - n - m + 2r + 2$. In this case we have two possibilities.

(i) Suppose that $r = \frac{n+m+1}{2}$. So, $e_f(1) - e_f(2) = \frac{mn}{2} + \frac{n^2}{2} + \frac{n}{2} + 3 > 1$ (ii) Suppose that $r = \frac{n+m-1}{2}$. So, $e_f(1) - e_f(2) = \frac{mn}{2} + (\frac{n^2}{2} - \frac{n}{2}) + 3 > 1$.

Subsubcase 3.2.2: All the vertices in $C_{(1,n-1)}$ are not in sequence

Suppose that we have *I* number of vertices from (n - r) number of vertices are not in sequence in $C_{(1,m-1)}$. Then, $e_f(1) = r + I + 3 + rn$ and $e_f(2) = m - r - I - 1 + n + n(m - r)$. Now, $e_f(2)$ in subsubcase $3.2.2 \le e_f(2)$ in subsubcase 3.2.1 and $e_f(1)$ in subsubcase $3.2.2 \ge e_f(1)$ in subsubcase 3.2.1. So, $e_f(1) - e_f(2)$ in this case is $\ge e_f(1) - e_f(2)$ in subsubcase 3.2.1. Now, we have already proved in subsubcase 3.2.1 that $e_f(1) - e_f(2) > 1$. Hence, $e_f(1) - e_f(2) > 1$ in this case. Hence, $C_{(1,m-1)} \lor C_{(1,n-1)}$ is not HMC, where n + m is odd and $m, n \ge 2$.

Theorem 2.2. $C_{(1,m-1)} \lor C_{(1,n-1)}$ is not HMC, where $n,m \in \mathbb{N}, m,n \ge 2$.

Proof:

Proof follows from propositions 2.4, 2.5 and 2.6.

3. CONCLUSION

In this article, we have discussed Harmonic mean cordial labeling of $K_n \vee C_{(1, m-1)}$ and $C_{(1, m-1)} \vee C_{(1, n-1)}$ for any $n, m \ge 2$ and $n, m \in \mathbb{N}$.

ACKNOWLEDGMENT:

We are very much thankful to the reviewers for their extensive, in-depth and thorough evaluation and for enhancing suggestions.

REFERENCES

- 1. R. Balakrishnan and K. Ranganathan (2012). A Textbok of Graph Theory, Springer-Verlag, Newyork.
- 2. J. Gowri and J. Jayapriya, Hmc Labeling of Certain Types of Graph, *Turkish Journal of Computer and Mathematics Education* (*TURCOMAT*) 12(10), 3913-3915.
- 3. J Gowri, J Jayapriya, HMC Labeling of Some Snake Graphs. International Journal of Special Education, 2022; 37(3).
- 4. Jaydeep Parejiya, Premkumar Lalchandani, Daxa Jani, and Sneha Mundadiya. Some remarks on harmonic mean cordial labeling. AIP Conf. Proc. 14 November 2023; 2963 (1): 020019.
- Jaydeep Parejiya, Daxa B. Jani and Yesha M. Hathi, Harmonic Mean Cordial labeling of some graphs, TWMS Journal of Applied And Engineering Mathematics, 14(1), 284-297.
- Jaydeep Parejiya, Sneha Mundadiya, Harsh Gandhi, Ramesh Solanki and Mahesh Jariya, Root Cube Mean Cordial Labeling of K_{1,n} × P_m, AIP Conf. Proc. 14 November 2023; 2963 (1): 020020.
- 7. D. B. West, Introduction to Graph Theory, Englewood Cliffs, NJ: Prentice-Hall, Second Edition, p. 225, 2000.

DOI: https://doi.org/10.15379/ijmst.v10i4.3540

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.