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Abstract: Location determination algorithms are widely used in cellular networks, 
especially in the long-term evolution (LTE) network, to enable the provision of location-
based services (LBS). The increasing global demand for cellular networks has resulted in 
the creation of new user equipment (UE) positioning systems that align with the network's 
momentum. Regrettably, all of these technologies are hindered by their incapacity to 
ascertain the location of the UE in distant regions. This article introduces a novel method 
utilizing Radio Frequency (RF) fingerprinting to precisely locate UEs in remote areas. The 
approach entails employing a proposed partitioning model with a high level of precision, 
incorporating artificial intelligence and machine learning AI/ML in its fundamental state to 
reduce the search area.  Furthermore, two algorithms are suggested: The first aims to 
enhance the efficiency of the battery with limited capacity by decreasing the frequency of 
measurements transmission. The second utilizes Jaccard similarity and incorporates the 
prefix filtering technique to determine matches. The algorithm is used to speed up the 
process of matching the fingerprint recorded in the fingerprint database with the fingerprint 
captured in real time. The results shows that it can reduces the transmission rate by 
77.08% and achieves the lowest error rate of 35.34 m. Additionally, it exhibits a response 
time of 8 seconds. 

Keywords: LTE, UE, AI/ML, LBS, RF Fingerprint. 

1. INTRODUCTION 

Location technologies, ranging from the initial first generation 1G to the latest fourth generation 4G, have 

been extensively utilised for commercial applications and to offer services like location-based services (LBS) 

and emergency response in case of accidents. The primary incentive was to generate monetary gains 

through the provision of these services and the promotion of the products. In recent times, cellular networks 

have experienced a growing dependence on them because of the wide range of services they offer, 

particularly the LTE network. This network has incorporated location-determining technology to aid in rescue 

efforts during natural disasters. The utilisation of these technologies in a different domain than their intended 

purpose results in variations in their performance in terms of accuracy, speed, and operational mechanism. 

Furthermore, similar approaches have been employed for police investigations and military objectives (law 

enforcement agencies), in order to help reveal the locations of local criminals, organized crime gangs, or 

terrorist organizations. The existing methodologies for identifying locations do not satisfy the needs of law 

enforcement authorities, and this emerging sector has numerous challenges as outlined in [1]. These areas 

function as sanctuaries and command centres for these illicit organisations to carry out their operations away 

from heavily populated urban areas in order to evade detection, monitoring, and legal action, as well as to 

minimise the risk of being detected by law enforcement officials upon their arrival from distant locations. The 

difficult terrain of these places offers a means of escape for these criminal organisations. Furthermore, law 

enforcement authorities need to provide  additional criteria for UE locating methods, including stringent 

accuracy, cost-effectiveness, prompt reaction time, adaptability to both urban and rural settings, and efficient 

system implementation, as elaborated in [1]. The RF fingerprint approach, particularly using RSSI, is a widely 

used technique for establishing the position of a UE. This method is favored for its affordability, as it does 

not require extra equipment, and its reliance on the network's interaction with the UE. The RF fingerprint 

approach comprises two distinct phases: Offline and Online. The initial stage involves the selection of a 

certain area, followed by the segmentation process, data collection, and subsequent manipulations on the 

fingerprint database to align with the established or utilized matching algorithm. The second phase involves 
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comparing the fingerprint obtained in real time for the UE with the fingerprint stored in the fingerprint database 

[2], [3], [4]. 

 
A new the applications of fingerprinting techniques were many, and the methods of utilization and 

implementation varied depending on the specific problem to be resolved. Furthermore, they exhibited variations 

in the measuring methods employed to construct the fingerprint, which facilitated the identification of the UE's 

location based on the specific nature of the problem at hand. The researcher in [5] suggested a series of 

strategies utilizing fingerprinting to address the issue of limited bandwidth in Narrowband Internet of Things 

(NB-IoT) transmissions in outdoor environment. Given that IoT systems depend on the integration of location 

information with data obtained from IoT devices, it is imperative to have a precise mechanism for detecting 

position. Hence, the researcher suggested employing the fingerprint technique to ascertain the location. 

Furthermore, the fingerprint utilized comprises measurements derived from multiple cells, encompassing four 

types of measurements: Received Signal Strength Indicator (RSSI), Reference Signal Received Power 

(RSRP), Reference Signal Received Quality (RSRQ), and Signal to Interference plus Noise Ratio (SINR), 

during the offline phase. Pending the online stage, the researcher suggested utilizing the Weighted k Nearest 

Neighbors (WKNN) algorithm to accomplish the task of matching. This technique is specifically employed to 

match the fingerprint stored in the fingerprint database with the fingerprint of the UE in real time. The limitation 

of this method is that it is dependent on smartphones, not usable in remote areas, requires at least three eNBs, 

and is not compatible with non-smartphones. In [6] the researcher introduced a novel technique, referred to as 

compact snake optimization cSO, in order to enhance the accuracy of localization systems that rely on 

fingerprints in indoor environments. Furthermore, it was proposed to utilize RSSI measurements for creating 

fingerprints during the offline phase, and it was also recommended to employ the WKNN algorithm for real-

time fingerprint matching. Furthermore, individually assess the functioning of each algorithm and thereafter 

integrate the two algorithms to evaluate their effect on the localization system. The findings demonstrate that 

the integration of both techniques enhances the precision of indoor localization. The limitation of this method, 

restriction to indoor environments, reliance on data from several cells to provide a unique identifier, the need 

for additional equipment to be integrated into the network, inapplicability in outdoor settings, and ineffectiveness 

in remote places. In [7] the researcher endeavored to enhance the precision of LBS systems in indoor settings. 

To do this, the researcher used a novel machine learning framework called Bag-of-Features BoF as a 

technique. The characteristics are categorized using k-nearest neighbor classification as well. Furthermore, 

the K-means algorithm is employed to divide these features into distinct clusters, and subsequently, the BoF 

technique is utilized to calculate the frequency of features within each cluster. This suggested technique utilizes 

RSSI data from several stations to generate fingerprints. The method then extracts features from these 

fingerprints, which are subsequently employed to infer location. Limitations include the inability to function in 

outdoor environments, the need for many stations to measure the signal, and the inability to be used in remote 

places. In [8] the study suggested employing Artificial Neural Networks ANN to enhance the precision of indoor 

localization systems that rely on fingerprinting. Additionally, it was proposed that the fingerprint may be 

constructed using RSSI readings. Principal Component Analysis PCA was employed to decrease the data's 

dimensions, serving as a way for transforming the data. The neural network use RSSI measurements as input, 

with the hidden layer serving as the learning model, the position is utilized as an output. Hence, the suggested 

system has the ability to simultaneously detect many targets. Limitations include (inability to function in outdoor 

environments, imprecise segmentation model, non-applicability in remote regions). In [9] the study suggested 

employing ANN to enhance the precision of indoor localization systems that rely on fingerprinting. Additionally, 

it was proposed that the fingerprint may be constructed using RSSI readings. Principal Component Analysis 

PCA was employed to decrease the data's dimensions, serving as a way for transforming the data. The neural 

network use RSSI measurements as input, with the hidden layer serving as the learning model, the position is 

utilized as an output. Hence, the suggested system has the ability to simultaneously detect many targets. 

Limitations include (inability to function in open-air settings, imprecise segmentation model, non-applicability in 

remote regions). In [10] the researcher suggested utilizing machine learning (ML) as a means to enhance the 

accuracy of Global Navigation Satellite Systems GNSS systems in metropolitan environments, where precision 

is compromised by the crowded outdoor environment. In addition, he proposed the creation of a fingerprint 
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using RSS measurements from various sources, and subsequently merging these measures with GNSS 

systems in order to enhance precision. To enhance efficiency, employ ANN on the merged dataset to function 

as a regression model. Furthermore, the KNN method was employed to compare fingerprints throughout the 

online phase. Limitations include (compatible exclusively with cellphones, non-applicability in remote regions, 

high cost). In [11] the researcher suggested creating a hybrid method that combines RSS and TA 

measurements from the sounding reference signal (SRS) to enhance the precision of localization systems. 

Additionally, time-difference-of-arrival (TDOA) measurements would be used to create a fingerprint and 

improve the effectiveness of localization systems in indoor settings. Furthermore, a suggestion was made to 

employ evenly spaced sensors for measuring TDOA, and to utilize least squares and deep neural network 

DNN for fingerprint matching during the online phase. Limitations include (ineffective an outdoor environment, 

necessitates supplementary network equipment, high cost, impractical in remote regions). In [12] the 

researcher suggested a technique that involves transforming RSS readings obtained from several eNBs in a 

particular region into grayscale images. To classify these images, the researcher advocated utilizing a DNN. 

The fingerprint is generated as grayscale photos. In addition, he suggested employing cross-entropy as a loss 

function and utilizing dynamic network rate for the learning rate. Furthermore, the system utilizes the Deep 

Residual Network (DRN) as a hierarchical training approach, alongside a feed-forward neural network (FFNN), 

to provide precise location identification. Limitations include inapplicability non remote places, high expense, 

and computational complexity. The primary issue we are endeavoring to address is the identification of the UE 

within the LTE network using a solitary eNB. This is intended to assist law enforcement agencies in 

apprehending individuals associated with criminal organizations in remote regions. The primary cause of this 

issue stems from the fact that the majority of location determination methods necessitate the utilization of a 

minimum of three eNBs for optimal functionality [1]. Furthermore, the accuracy of the method increases 

proportionally with the number of eNBs present in the vicinity. Hence, in this research, we suggest utilizing 

RSS-fingerprinting to determine the location of the UE using a single eNB. Additionally, we recommend 

employing a ML approach to narrow down the search area, accelerate the response time, and minimize the 

search duration. The contribution of this essay can be encapsulated in: 

• After thoroughly examining prior and current studies on location determination techniques, we can 

confidently state that we are the pioneers in successfully determining the position of a UE in an LTE 

network using only one eNB. 

• The partition model presented in this article relies on the subdivision of the entire region into smaller 

sub-regions, referred to as fingerprints. Furthermore, reference points RP are strategically distributed 

within each fingerprint in a precise geometric arrangement to effectively capture a maximum number 

of fingerprint features within each sub-region. This approach differs from fingerprint-based 

approaches, where the RP is spread throughout the entire region's paths, resulting in the failure to 

capture the unique characteristics of the fingerprint and thus leading to low accuracy. 

• Minimizing the transmission measurements rate between the UE and the LTE network while 

ensuring the network's operations and functionalities remain unaffected. 

• The proposed matching algorithm operates by means of three phases. The initial phase aims to 

ascertain the resemblance between fingerprints using Jaccard similarity. The second stage is to 

identify the presence of overlapping fingerprints by utilizing overlap similarity. In the final stage, the 

prefix filtering technique is employed to identify the similarity coefficient with the lowest value. As far 

as we know, this is the initial instance where Jaccard similarity and overlap, along with the prefix 

filtering methodology, have been employed in UE localization methods within the LTE network. 

2. A NOVEL RSS FINGERPRINTS  

2.1 Selected Area 

In order to simulate the issue at hand, we have selected a desert region due to its conducive conditions for 

criminals to conceal themselves and carry out illicit activities. The current setting renders it unfeasible for law 

enforcement authorities to undertake the task of chasing them. The specified region is encompassed by a 
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single eNB, with a coverage area of 283.5 kilometers in a circular configuration. The coverage diameter 

measures 19 kilometers, while the coverage radius spans 9.5 kilometers. Given that the eNB consists of a 

minimum of three sectors, with each sector covering an angle of 120 degrees, the coverage area of each 

sector is 94.5 km. 

It is important to emphasize that there is no precise assessment of the extent of the signal transmitted by 

the eNB. Based on our case study and empirical testing conducted in remote locations, we have determined 

that the optimal distance for receiving all LTE network services without any issues is 9.5 km, as show in Figure 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The diagram of the proposed method. 

2.2 A Proposed Partition Model 

The suggested partitioning model effectively addresses the limitations inherent in fingerprint-based 

approaches instead of relying utilizing distributed reference points along the paths in those areas to generate 

a path-specific fingerprint [5]-[12]. The primary concept in the proposed model is to partition the entire region 

into sub-regions, denoted as SR, and distribute reference points within each sub-region, denoted as RP. The 

primary objective of partitioning the entire region and allocating reference points within it is to comprehensively 

capture all the distinctive characteristics of that region in order to create its unique fingerprint. In the given 

problem, we have suggested that the area of the SR should be 500 square meters in the desert region. The 
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suggested partition model exhibits significant adaptability, allowing for the modification of the size of the SR 

based on the region's characteristics (such as hilly, urban, or rural areas) without compromising the overall 

functionality of the technique. The overall area covered by one sector is 94.5 square kilometers. To facilitate 

division into smaller units, we convert this amount from square kilometers to square meters. As a result, the 

area of the sector becomes 9450000 square meters. Specifically, there are 189,000 SR in each sector, 

resulting in a total of 576,000 SR across entire eNB coverage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A Proposed Partition Model. 

2.2.1 Distribution of RP In SR 

A total of 24 RP is allocated in the SR to accurately and exclusively capture the distinctive characteristics 

of the fingerprint. The points are arranged in a perfect geometric pattern. Four RP are positioned at the corners 

of the square, forming a 90-degree angle. Each RP is located one metre away from the two adjacent sides. 

Subsequently, the remaining RP is evenly allocated inside the SR, after subtracting a distance of 1 metre from 

both sides. This is done considering that the square's side length measures 22.36 units. In order to express 

this process in mathematical terms, we adhere to the subsequent equation. 

𝐷 =
2 − 𝑆𝐿

1 − 𝑁
  (1) 

Where D is the distance between RP, SL is the square side length, N is total RP in side length. 

The distribution of RP within the SR will be organized in a grid format, consisting of four rows and six 

columns, as depicted in Figure 3. The purpose of identifying the four RPs in the corner is to minimize the 

disparity between two neighboring SRs and to aid in the identification of similarities and overlaps in 

fingerprints. Furthermore, there is a fixed distance of 1 meter between each successive SR, resulting in the 

adjacent RP being just 3 meters apart from another SR. Figure 4 depicts the configuration of the neighboring 

SRs and the precise distance that separates them. By substituting the given values into equation (1), the 

resulting expression is obtained: 
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2 − 22.36
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𝐷2 =
2 − 22.36

1 − 4
=

20.36

3
= 6.786𝑚 

2.3 Collection Measurements 
       Once the partition model has been fully implemented according to the specifics given in the previous 

section, the data gathering stage commences. In this stage, the fingerprints for the SR are generated in the 

form of a vector known as a VSR. This vector or fingerprint includes several components: the eNB identifier, 

known as eNBID, the eNB location represented by eNBL, the eNB sector from which the RSS measurements 

were obtained within the SR, referred to as eNBSEC, RSS measurements at each RP point distributed within 

the SR from RP1 to RP24, the coordinates of the center of the SR denoted as sen (x, y), which are utilized for 

location matching in the online stage, and MAX (RPN) and MIN (RPN). The ultimate fingerprint will appear in 

this manner: 

𝑉𝑆𝑅 = [𝑒𝑁𝐵𝐼𝐷 , 𝑒𝑁𝐵𝐿 , 𝑒𝑁𝐵𝑆𝐸𝐶 , 𝑅𝑃1 , … , 𝑅𝑃24, 𝑠𝑒𝑛(𝑥, 𝑦), 𝑀𝐴𝑋(𝑅𝑃24), 𝑀𝐼𝑁(𝑅𝑃24)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: distributed 24 rp with sub-region. 
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Figure 4: Distances between sub-region SR. 

2.4 Building Fingerprint Database  

During the data collecting phase, each SR generates its own fingerprint in the form of a vector VSR, which 

is then placed in the initial fingerprint database. At this point, it is guaranteed that all RSS measures that make 

up the fingerprint are collected and that no measurement is omitted. If there is a shortage in the fingerprint 

measurements, the fingerprint is sent back to the collection step before being saved in the initial fingerprint 

database [9]- [7]. The search for a match in the initial fingerprint database is inefficient due to the large size of 

the data. The current search technique is time-consuming, resulting in longer response times. Hence, in order 

to address this issue, we suggested employing the clusters functionality through the utilization of the k-means 

method. The algorithm receives the centroid coordinates of the fingerprints (SR) as input, resulting in each 

cluster being formed by a collection of neighboring fingerprints determined by their coordinates. The clustering 

feature greatly reduces search time and minimizes response time. However, a new challenge arises: 

calculating the value of k depending on the magnitude of the available data. Various techniques, such as the 

gap statistic, mean shift, silhouette analysis, and elbow method, are employed to ascertain the value of k. In 

our particular example, we utilized the elbow approach.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. clustering feature. 

 

Figure 5 depicts steps 1 to 4, illustrating the utilization of the cluster’s format for the fingerprints database. A 

cluster is a collection of neighboring fingerprints organized according to their coordinates. This approach 

significantly enhances the matching process during the online stage. 
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2.5. Training Stage   

Here, the characteristics of each cluster are identified based on the measurements and parameters of the 

SR it holds, aligning with the functionality of the proposed matching algorithm during the online phase. That 

is, seeking qualities that aid in the matching process [13], [14], [15]. Thus, each cluster is assigned a label that 

helps differentiate it from others based on its specific parameters, as illustrated in Table 1. 

Table 1. cluster lapel  

 
 
Table 1 displays five factors that differentiate each cluster from the others. The parameters are the eNB 

location, eNB ID, sector ID within the eNB, highest RSS measurement from all SRs within the cluster, and 

lowest measurement value. After finishing this stage, the crucial final step is testing. This stage is to confirm 

the accuracy and coherence of the data produced during the training phase. The data is split into two parts: 

70% for training and 30% for testing. This stage is the final step in the offline process before transitioning to 

the matching phase in the online phase. 

2.6 Online Phase  

This phase represents the final step in executing our suggested approach for determining the UE's position 

in remote areas. Typically, in this phase, one would select a commonly used matching method or develop a 

new one that is appropriate for the fingerprint database. Creating fingerprints for SR involves tailoring them to 

the parameters of the algorithm [16], [17]. The key is to understand how the algorithm functions and then 

design the fingerprint database accordingly. At this point, our approach diverged from conventional ways by 

not only enhancing and evolving the matching algorithm but also by devising an algorithm to conserve energy 

for the UE. The aim is to minimize the periodic transmission of measurements between the UE and the LTE 

network. The UE's restricted battery capacity results in increased battery power consumption when delivering 

measurements often.  

2.6.1 A Proposed Power Saving Algorithm 

Signaling messages refer to the signals exchanged between the UE and the LTE network. This operation 

proceeds at regular intervals every 30 milliseconds using the two protocols LPP and LPPa [18], [19]. The 

primary objective of this operation is to direct calls to and from the cellular network by providing the network 

with essential information about the virtual location of the UE for call routing. The network has to be aware of 

the eNB's identification, its geographic position, and the specific sector within the eNB's service area to which 

the UE is connected. The UE receives signals from the eNB, conducts necessary measurements, and 

transmits these measurements to the network as initial location information. We developed a power-saving 

method to minimize redundant transmissions and preserve the limited battery capacity of the UE while 

maintaining seamless connectivity with the LTE network.  

Our solution primarily depends on fingerprints during the offline phase and we suggest creating the 

fingerprint for the UE in real-time during the online phase. The fingerprint is a vector represented by Vue. The 

fingerprint shares the same properties as the SR fingerprint, but differs in the method used to generate the 

measurements. The unique RSS readings present a challenge comparable to that encountered in wireless 

sensor networks (WSN), where neighboring sensor nodes may transmit identical or similar data [20], [21]. This 

results in heightened network traffic and decreased battery life because of its restricted capacity. We are 
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working on refining this approach by drawing on past experiences and enhancing them to address the current 

issue. We utilized a similarity function named Similar measurement (SM) based on the following equation.  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  (𝑆𝑀)(𝑀𝑉𝑈𝐸𝑖 , 𝑀𝑉𝑈𝐸𝑖+1) =  {
1 𝑖𝑓 ‖𝑀𝑉𝑈𝐸𝑖 − 𝑀𝑉𝑈𝐸𝑖+1‖ ≤ 𝛿,
0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                  (2) 

 

The first measurement read to create the UE fingerprint is denoted as 𝑀𝑉𝑈𝐸𝑖 and kept as 𝑉𝑈𝐸. The similarity 

threshold, 𝛿, is determined by practical application. 

Algorithm 1 stores the initial measurement in the UE's fingerprint vector and then compares any 

subsequent measurements to the original one. If the condition is satisfied, the second measurement is 

removed, and the first measurement is retained. If the criterion is not satisfied, the second measurement will 

be included in the fingerprint. This step is iterated until all UE fingerprint measurements are finished. In the 

method, we determined both the similarity of measurements and introduced an index for the frequency of 

measurements in the fingerprint, which represents how often the same measurement occurs during the 

fingerprint creation process. The primary goal is to streamline and expedite the matching process in real-time, 

resulting in a quick response time. The algorithm now reduces the process of delivering similar measurements 

by 40% by requiring the UE to only submit unique measurements. 

This study is the first to utilize the similarity and frequency of measurements to create a real-time fingerprint 

of the UE in the online phase, reducing the need for measurement transmission between the LTE network 

and the UE. Therefore, reducing the consumption of limited battery capacity. 

2.6.2 A Proposed Matching algorithm 

The proposed algorithm we are investigating utilizes JACCARD similarity and prefix filtering to match the 

UE fingerprint in real time with the SR fingerprint stored in the database [20]- [22]. Integrating these two notions 

into location determination algorithms is unprecedented, given there is no prior evidence of their application. 

• JACCARD similarity 

The primary objective of utilising JACCARD similarity is to determine the similarity between two 
fingerprints A and B as an initial step using the following equation. 

J (VSR, VUE) =
|𝑉𝑆𝑅 ∩ 𝑉𝑈𝐸|

|𝑉𝑆𝑅 ∪ 𝑉𝑈𝐸|
 ≥  𝑡                                                                                              (3) 

Where 𝑡 is the similarity threshold between the two fingerprints. 
Reaching this stage signifies the initial identification of fingerprint resemblance, which decreases 

the number of pointless searches, lowers computing usage, and so quickens response times. 

Determine the number of intersecting measures based on the similarity threshold of measurements 

𝛿 between fingerprint 𝑉𝑆𝑅 = [𝑀𝑆𝑅𝑖 , … , 𝑀𝑆𝑅24 and fingerprint 𝑉𝑈𝐸 = [𝑀𝑈𝐸𝑖 , … , 𝑀𝑈𝐸24, relative to the total 

number of measurements in the two fingerprints using equation (3). Completing this phase enables 

progression to the subsequent stage in the algorithm to determine the level of matching with 

Algorithm 1 Power Saving in UE fingerprint  
Require: new measure MVUEi+1, unique from previous measures in fingerprint VUE 
Guarantee: searching for similarities measures in VUE 

1. For every measure MVUEi ∈ VUE  do 

2. If (similar measur (MVUEi, MVUEi+1)) =1 then 

3.     f (MVUEi) ← f (MVUEi) + 1 

4.     Delete MVUEi+1 

5. Else  

6.      Add  MVUEi+1 to the fingerprint VUE 

7. f (MVUEi+1) ← 1. 

8.      If sum (MVUE) = 24 then 

9. end 

10. End if 

11. End for 
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increased precision. 

• Prefix Filtering Technology 

This strategy operates by computing the shared prefix between two groups, rather than 

considering all components from both groups. This technique was employed to identify fingerprint 

similarities due to its minimal computing consumption, which enhances the efficiency and accuracy 

of fingerprint matching [20]-[21]. Initially, the measurements of the two fingerprints need to be 

organized in either an ascending or descending order, based on the problem type and solving 

method. We have suggested an ascending order, so we require the following definition: 

Definition 1 Ordering Measurements (OM): Sort the measurements of fingerprint 𝑉𝑈𝐸 in ascending 
order based on its frequency index, which is the result of algorithm (1) used during the fingerprint 
creation. Sort 𝑉𝑆𝑅 fingerprint measurements in ascending order. 
We must transform equation (3) into overlap similarity: 

𝐽(𝑉𝑆𝑅 , 𝑉𝑈𝐸) ≥ 𝑡 ↔   𝑂(𝑉𝑆𝑅 , 𝑉𝑈𝐸)  ≥ 𝛼                                                                                                          (4) 

Where, α =
𝑡

1+𝑡
 . (| 𝑉𝑆𝑅| + |𝑉𝑈𝐸 |)   

We also require a function to determine the quantity of overlapping pairs between fingerprints 𝑉𝑆𝑅 
and 𝑉𝑈𝐸. The function is referred to as the overlapping pair’s function and is represented by the 

symbol ∩𝑃, as defined below: 

Definition 2 Overlapping Pair’s Function (OPF) ∩𝑃:   Two fingerprints  𝑉𝑆𝑅 and 𝑉𝑈𝐸 are considered 
overlapping if and only if the outcome of their intersection consists of similar ordered pairs, as 
determined by a Similar measurement, so we define: 

𝑉𝑆𝑅  ∩P 𝑉𝑈𝐸 = {(MVSR1, MUE1) ∈ 𝑉𝑆𝑅  × 𝑉𝑈𝐸/ SM (MVSR1, MUE1) =1} 

The approach of creating identical ordered pairs from the point of intersection between the two 

fingerprints, as described by the aforementioned formula, substantially simplifies the real-time 

matching procedure. Furthermore, it is necessary to assess the functioning of the aforementioned 

formula in order to verify the resemblance of the fingerprints and pairs that are produced when the 

formula is applied, as outlined below: 

𝐽(𝑉𝑆𝑅 , 𝑉𝑈𝐸) ≥ 𝑡 ↔   |𝑉𝑆𝑅  ∩𝑃  𝑉𝑈𝐸|  ≥ 𝛼 =
𝑡

1 + 𝑡
 . (| 𝑉𝑆𝑅| + |𝑉𝑈𝐸)                                                (5)    

 

After establishing the method for determining similar measurements and understanding the degree 

of similarity and overlap between the two fingerprints, as well as the notion of the frequency of 

measurement occurrence during the construction of the fingerprint for the UE in the online stage. It 

is now necessary to integrate this final concept with the prefix filtering technique, which aims to 

enhance the precision of finding matches between the two fingerprints. It is now necessary to indicate 

the prefix for each fingerprint based on the frequency of its readings, as illustrated in (5). 

 

 

 

 

 

 

 

 
 

 

Algorithm (2) MATCHING. 

Require: C is a set of clusters, V is a milt sets of victors in cluster c, each victor their element is 

stored by ordering O, each measure in VUE fingerprint is stored by ordering O based on their 

frequency, measure similarity threshold δ, a Jaccard similarity threshold t, an overlap similarity 

threshold α, set the fingerprint size to (16,24,36). 

Guarantee: Match is a match vector of measurements with 𝑉𝑈𝐸. 

1: M← ∅ 

2: i ← ∅(1 ≤ i ≤ total number of cluster in C) 
3: l←1 
4: for each 𝑐𝑖∈ C do 

5:            if 𝑐𝑖−𝑖𝑑 == 𝑉𝑈𝐸−𝑖𝑑 and 𝑐𝑖−𝑠𝑒𝑐 ==  𝑉𝑈𝐸−𝑠𝑒𝑐 then  

6:               if min 𝑐𝑖 ≥ min 𝑉𝑈𝐸and max 𝑉𝑈𝐸  ≤ max 𝑐𝑖 then  

7:                   for each 𝑣𝑠𝑗∈ 𝑐𝑖 do 

8:                         for k ← 0 to N do 

 



International Journal of Membrane Science and Technology 2023, Vol. 11, No. 1, pp 467-486 

477 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed matching algorithm (2) conducts an initial assessment to identify the cluster to which the VUE 

fingerprint belongs. This is done by comparing the 𝑒𝑁𝐵𝐼𝐷 and 𝑒𝑁𝐵𝑆𝐸𝐶 values of the VUE fingerprint with the 

eNBCID and eNBsec values of the cluster in its label, as illustrated in Table 1. In order to guarantee that the 

VUE fingerprint matches the cluster, it is necessary to compare the MIN and MAX (RSS values) between the 

fingerprint and the cluster, as indicated in steps (5, 6). Following this phase, the degree of similarity between 

the VUE fingerprint measurements and the VSR fingerprints inside the cluster, determined based on the 

threshold 𝛿, is assessed by considering the frequency of both the VUE measurement and the VSR 

measurement. When the criterion is satisfied, two measurements are taken and retained as a pair, and the 

second measurement of the VSR is advanced. In the event that the condition is not satisfied, one proceeds to 

the subsequent measurement in VUE, and continues this process for the remaining measurements (7-15). After 

finishing, the algorithm verifies if the total frequencies of the VSR fingerprint exceed the similarity criteria for 

both fingerprints 𝑡. The next step is to verify that the number of identical pairs of the two fingerprints has 

exceeded the overlap threshold 𝛼. If the condition is met, the algorithm sets up the coordinates of the middle 

of the current VSR as the location of the UE, and the steps continue if it is not verified. 

3. EXPERIMENT SIMULATION AND RESULTS 

The OMNET++ simulation kernel library (C++) was utilised in conjunction with the Python programming 

language to replicate the functionality of the LTE cellular network in remote desert regions . The components 

were fitted in an HP OMEN laptop including an Intel Core i9 processor, 32 GB of RAM, and 2 terabytes of 

SSD storage. 

3.1 Experiment Setup 

A single eNB was utilized to serve three sectors, namely A, B, and C. The coverage angle of each sector 

is 120 degrees. Therefore, the total coverage angle of the eNBs is 360 degrees. The eNB has a coverage 

radius of 19 km, resulting in a total coverage area of 283.5 km2. Hence, the extent of coverage for a single 

sector is precisely 94.5 square kilometers. The eNB's overall coverage area is partitioned into SRs, with 

each SR measuring 500 square meters. 

9:                              if |𝑀𝑉𝑆𝐾 -  𝑀𝑉𝑈𝐸𝑙| ≤ δ then 

10:                                  f (𝑀𝑉𝑠𝑘) ← f(𝑀𝑉𝑈𝐸𝑙)  +1 

11:                                𝑝𝑎𝑟𝑘,𝑙  (𝑉𝑆𝑗 , 𝑉𝑈𝐸) ← (𝑀𝑉𝑠𝑘, 𝑀𝑉𝑈𝐸𝑙)    

12:                             else 
13:                                l ← l+1 
14:                            end if 
15:                       end for 
16:                       if sum_f(𝑀𝑉𝑆) / min (𝑉𝑆𝑗) + min (𝑉𝑈𝐸) ≥ t            

17:                              𝑝_𝑣𝑗← (|𝑉𝑆𝑗| − α + 1) 

18:                           𝑝_𝑉𝑢𝑎𝑣 ← (|𝑉𝑈𝐸) | − α + 1)    

19:                          if sum (𝑝𝑎𝑟⬚(𝑉𝑆𝑗, 𝑉𝑈𝐸)) ≥ α then  

20:                               Match ← 𝑉𝑆𝑗−𝑐𝑜𝑟𝑑𝑒𝑛𝑎𝑒𝑡 

21:                          else  
22:                       else          
23:                 end for   
24:              end if 
25:          end if      
26: end for    
27:       return Match 
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3.2 Simulation Performance in Offline Phase 

The simulation was performed once and lasted around 1 hour and 35 minutes. It was conducted to create 

the LTE network environment and collect RSS measurements from the dispersed RP and pre-defined in the 

SR, as described in Section 2.2. During this time frame, signaling messages were transmitted 15,800,000 

times using the Lpp and Lppa protocols [18], [19]. Throughout this procedure, RSS readings were recorded 

for a total of 13,824,000 RP that were spread throughout all SRs. Within the coverage region of the eNB, there 

were a total of 576,000 SRs. Furthermore, the fingerprints for each SR were created as a vector (VSR) based 

on the criteria outlined in Section 2.3. Table 3 displays a representative selection of the fingerprints that were 

recorded. 

Table 3. fingerprints sample at each SR. 

𝒆𝑵𝑩𝑰𝑫 𝒆𝑵𝑩𝑳 𝒆𝑵𝑩𝑺𝑬𝑪 RP1 . . . RP24 X Y MIN MAX 

1 8980.768555 1 -42.58097404 . . . -42.8784 27955.34 34338.34 -42.8784378 -42.58097404 

1 8980.768555 1 -44.20933289 . . . -44.387 34535.46 30106.02 -44.401285 -44.20933289 

1 8980.768555 1 -44.36926904 . . . -44.5696 30004.42 30038.94 -44.56962 -44.36926904 

1 8980.768555 2 -49.03412515 . . . -49.0412 36831.5 27117.82 -49.0511677 -49.02414077 

1 8980.768555 2 -49.05284218 . . . -49.06 36830.5 27095.46 -49.0698603 -49.04290109 

1 8980.768555 3 -49.08100496 . . . -49.0541 36763.42 42654.5 -49.081005 -49.05414845 

1 8980.768555 3 NULL . . . -49.0623 36741.06 42676.86 -49.0834175 NULL 

3.3.3 Clustering Feature and Training Data 

Once the pre-processing stage is finished to ensure that all RSS measurements are recorded in each 

RP, the fingerprints (SR) are then divided into clusters using the k-means algorithm. The elbow method 

was used to choose the ideal k value relative to the size of the data used, as the k value = 576 at a rate 

of 1000 SR per cluster. Figure 6 shows the operation of the elbow method to choose k. The primary 

objective of this procedure is to effectively decrease the search space in real-time, resulting in a notable 

improvement in response speed. Once this step is finished, the data undergoes a training process to 

validate its accuracy, as well as to assign a label to each cluster that aligns with the suggested matching 

algorithm. Table 4 displays the results of the training procedure.  
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Figure 6. elbow method. 

Table 4. sampling of the training procedure 

Number of 
clusters 

eNBloc eNBCID eNBsec MINrp MAXrp 

1 8980.768555 1 1 -49.09686279 
 

-49.09354401 
 

2 8980.768555 1 1 - - 
- 8980.768555 1 2 - - 
- 8980.768555 1 2 - - 
- 8980.768555 1 3   
- 8980.768555 1 3 - - 
- 8980.768555 1 1 - - 
- 8980.768555 1 1,3 - - 
- 8980.768555 1 3,2 - - 
- 8980.768555 1 2,1 - - 
- 8980.768555 1 3,1 - - 
- 8980.768555 1 2 - - 
- 8980.768555 1 1 - - 
- 8980.768555 1 2 - - 

576 8980.768555 1 6 - - 

Table 4 displays the fixed values of eNBloc and eNBCID, which correspond to the coordinates and identifier 

of the eNB location. These values remain constant as we are only considering a single eNB. The eNBsec 

varies based on the positions of the SRs within a cluster. Likewise, the values of MINrp and MAXrp are similarly 

modified based on the RP values found in the SRs inside a particular cluster. Figures 7 and 8 show the shape 

of the data before and after the training process, respectively, Figure 9 also shows the portion of data allocated 

for the testing. 
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Figure 7.  all fingerprint. 

Figure 8. 70% fingerprint for training 
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Figure 9. 30% fingerprint for testing 

3.4 Simulation Performance in Online Phase 

During the online phase, a total of four UE was utilised, each running on separate operating systems, 

namely IOS and Android, with an average of two from each operating system. In the first case, two devices 

were placed near the eNB position and other devices are placed at the boundary of the eNB coverage. In the 

second case, the devices were randomly distributed to test the accuracy of the matching algorithm (2). In the 

initial step, algorithm (1) establishes the measurement similarity threshold 𝛿 as -0.0005 db and proceeds to 

generate a unique fingerprint for each UE. Creating one fingerprint requires 750 milliseconds, so creating four 

fingerprints in real time takes 3000 milliseconds, which is equivalent to three seconds. The algorithm generates 

an index that represents the occurrence rate of measurements in a single fingerprint. The fingerprint 

generating process is considered complete when the overall frequency of measurements reaches 24. Put 

simply, the fingerprint does not need to comprise 24 measurements. Put simply, the UE fingerprint comprises 

five measures, with a total frequency of 24. Table 5 displays the fingerprints of the UE at various locations. 

Table 5. fingerprints of four UE 

UE MUE1 MUE2 MUE3 MUE4 MUE5 MUE6 MUE7 eNBCID eNBsec 

UEIOS1 -20.061279 -19.967064 -20.248314 -20.153938 -20.058891 null null 1 A 

ind IOS1 5 8 7 2 2     

UEIOS2 -49.080406 -49.077736 -49.073311 -49.088234 -49.085785 -49.080894 -49.075996 1 B 

ind IOS2 4 7 4 2 2 3 2 1 C 

UEAND1 -39.509491 -39.508347 -39.530251 -39.527954 -39.526825 -39.552162 null 1 C 

indAND1 9 4 5 3 2 1    

UEAND2 -49.064758 -49.080902 -49.075958 -49.090607 null null null 1 A 

indAND2 8 10 2 4      

Table 5 displays four fingerprints, each accompanied by an index indicating the frequency of their 

measurement’s occurrence. It is seen that the first fingerprint comprises five measurements, the second 

comprises seven measurements, the third comprises six measurements, and the fourth comprises four 

measurements. However, the total occurrence frequency index for each fingerprint adds up to 24. The first 

fingerprint reduced the process of sending the measurement to the network by a reduction rate of 79.17 due 
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to the similarity of the received measurements. Similarly, the second fingerprint reduced it by a reduction rate 

of 70.83, the third by a reduction rate of 75, and the fourth by a reduction rate of 83.33. Therefore, we achieved 

a 77.08 reduction rate  in the transmission of measurements between the LTE network and the UE, resulting 

in a direct improvement in the efficiency of the UE's limited battery capacity. 

Additionally, Algorithm (2) necessitates the initial establishment of the Jaccard threshold 𝑡 = 0.25, which 

determines the level of similarity between the two fingerprints, as well as the overlap threshold 𝛼 ≅ 9 for the 

elements of the two fingerprints. As previously stated, both the measurements of VUE and VSR are globally 

ordering according to OM. The algorithm (2) selects the necessary cluster by comparing the eNBCID and 

eNBsec, as well as the MIN and MAX values for both the UE and cluster label. The algorithm initially compares 

the first measurement MSRi from the VSR with all the VUE measurements based on the threshold 𝛿. If a match 

is not found, it proceeds to the second measurement. When the condition is satisfied, the measurement 

occurrence frequency index f(MSri) is incremented by one simultaneously. By finding the overlapping 

measurement when constructing the overlapping ordered pairs, this phase allows us to enhance the 

effectiveness of matching. The algorithm subsequently generates ordered pairs of overlapping measurements 

based on the preceding stage. Furthermore, the algorithm evaluates the total of the measurement occurrence 

frequency index sum_ f(VSri), which indicates the common elements between the two fingerprints, to determine 

if it satisfies the t threshold. When the condition is satisfied, the prefix for the two fingerprints is computed. 

However, if the condition is not satisfied, it proceeds to the next VSR inside the same cluster. Once the prefix 

for the two fingerprints is computed, the frequency of overlapping pairs is evaluated to determine if it meets or 

exceeds the 𝛼 threshold. Once confirmed, if the two fingerprints are overlapping, the algorithm will provide the 

coordinates of the centre of the VSR as the real-time location of the UE. 

3.5 Performance Evaluation 

In order to assess the effectiveness of the suggested strategy, the evaluation process was divided into two 

distinct stages. The initial phase involves assessing the performance of the suggested matching algorithm, 

with a focus on WKNN, which is a frequently employed algorithm in location determination techniques. The 

efficacy of the suggested partitioning model in current fingerprints is assessed in comparison to the partitioning 

model used in traditional fingerprints during the second step. Utilizing four measures, namely Root Square 

Error (RSE), and Root Means Square Error (RMSE). 

During the initial phase, the MAE and CDF are employed to compute the error in position between the 
real location of the UEac and its estimated location UEes, using the Euclidean distance. Let CSR it is the 
number of fingerprints SR in one cluster, MAE is defined as [7]. 

𝑀𝐴𝐸 =  
1

𝐶𝑆𝑅

 ∑ √(𝑈𝐸𝑎𝑐 + 𝑈𝐸𝑒𝑠)2

𝐶𝑆𝑅

𝑖=1

                                                                                                                       (6) 

The CDF graphic illustrates that the likelihood of a positioning error being equal to or less than a certain 

distance. The data visualizes the extent to which positioning errors of SRs are distributed and provides a 

comparative analysis between the suggested technique and WKNN. 
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Figure 10. CDF of SR 22.36m *22.36m. 

During this phase, simulations were conducted inside a specific fingerprint region of 22.36 m * 22.36 m. 

The implemented matching algorithm (2) successfully attained a (MAE) of 35.34 m. The obtained outcome is 

much inferior to that of WKNN, as seen in Figure 10. 

In the second step, we include the partitioning model suggested in our present approach with two distinct 

partitioning models derived from two separate traditional methodologies [23], [24]. RES and REMS were used 

to compare their respective outcomes for assessment. In order to accomplish this objective, we will assume 

that the coordinates of the current position of the (UE) are (UEX, UEY) and the coordinates of the anticipated 

fingerprint (SR) are (SRX, SRY). The RES can be determined using the following formula [25]: 

𝑅𝐸𝑆 = √(𝑈𝐸𝑋 − 𝑆𝑅𝑋)2 + (𝑈𝐸𝑌 − 𝑆𝑅𝑌)2       (7) 

Given that there are four UEs spread out within the coverage area of the eNB, we can assume that the 

simulation will be run four times, the RMSE is: 

𝑅𝑀𝑆𝐸 =
√𝑅𝐸𝑆1

2 + ⋯ + 𝑅𝐸𝑆4
2

4
   (8) 

To accurately determine the actual location rate of the UE, we assumption that there are anticipated 

fingerprints (SRexp). The acceptable fingerprints (SRacp) are determined based on the outcome of the first 

stage, where they must be less than 35.34 meters. The calculation for the rate of acceptable fingerprints 

(SRacpR) is as follows: 

𝑆𝑅𝑎𝑐𝑝𝑅 =
𝑆𝑅𝑎𝑐𝑝

𝑆𝑅𝑒𝑥𝑝
       (9) 

The simulations were conducted a total of eight times, with four instances using the partition model 

suggested for the present technique, and the other four instances employing the partition model derived from 

older methods. Due to the division of the eNB's coverage area into three sectors A, B, and C, the UEs were 

strategically placed at varying distances from the eNB, including the outermost edge of the coverage. Table 6 

demonstrates the advantages of our suggested strategy compared to previous methods, regardless of 
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whether the UE is in close proximity to the eNB or at the periphery of coverage. 

Table 6. Location accuracy 

Partitioning model UE NeareNB FareNB Sector Respond time 

Our approach  20.48m  A 2.5s 

Our approach  26.89m  B 3s 

Our approach   30.76m C 6s 

Our approach   32.93m A 8s 

Traditional  100.23m  B 54 

Traditional  123.44m  C 45 

Traditional   212.25m C 240s 

Traditional   246.77m B 200s 

Table 6 demonstrates the superiority of our suggested technique compared to previous methods, not only in 

terms of the lowest error rate but also in response time. The variation in outcomes is attributed to the 

conventional techniques depending on the functioning of a minimum of three eNBs. Furthermore, the 

partitioning model used in these systems lacks effectiveness. 

Figure 11. A Novel RSS Fingerprint accuracy comparison with traditional methods 

Based on Figure 11, it is evident that the RMSE of the suggested partition model is significantly reduced 

compared to other conventional techniques. According to these findings, the suggested partition model 

possesses the capability to accurately identify the position of the UE with the least meter of errors. We 

conducted tests on several scenarios to evaluate the effectiveness of our proposed technique, specifically 

focusing on the positioning of the UE within the eNB coverage area. One crucial scenario we examined was 

when the UE is positioned at the periphery of the coverage area. Our technique has consistently demonstrated 

exceptional performance in all circumstances. 

4. CONCLUSION 

This article introduces a new and innovative method called Novel RSS Fingerprint, which can accurately 

pinpoint the location of a UE in remote area using only one eNB. This represents a groundbreaking approach 

in positioning techniques that utilize the full LTE network without requiring the addition of extra devices to the 
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network. This circumstance was perceived as a predicament that necessitates attention since it poses 

obstacles to law enforcement authorities, as the majority of approaches depend on a minimum of three eNBs. 

In order to accomplish this objective, a division model was suggested that allows us to efficiently collect RSS 

measurements in each RP within the SR. The 24 RPs within each SR were also strategically arranged to 

enable comprehensive measurement coverage and the creation of distinct and unique fingerprints. 

Furthermore, this research presents a proposed method aimed at mitigating the power consumption of the UE 

battery, which is constrained by its limited capacity. The system does this by reducing the average 

measurement transmission rate by 77.08%. In addition to the prefix filtering strategy, a matching algorithm 

was suggested that utilized jaccard and overlap similarities. These notions are being employed for the first 

time in location determination methods. The findings demonstrated that our suggested approach had the most 

minimal margin of error, amounting to 35.34. Furthermore, our new method was compared to established 

methods, and it demonstrated the lowest REMS rate among all other methods. Our method is highly efficient 

in accurately determining the location of the UE, irrespective of its distance from the eNB, as it has undergone 

extensive testing in many scenarios. Additionally, it boasts an impressive response time of 8 seconds. 

Important note: So far, according our knowledge the findings were attained for the first time in an LTE network 

using a solitary eNB, without any further devices being included into the LTE network. This article introduces 

the use of Jaccard and overlap similarities, together with the prefix filtering methodology, in location 

determination techniques, which has not been previously documented. 
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