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Abstract

In this paper, by using the notion of compatibility, weak compatibility, occasionally weak compatibility and commutativity, we
establish some common fixed point theorems for six mappings satisfying integral type contractive conditions in complete
dislocated metric spaces. Our work improves and extends some earlier results in the literature.
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1.Introduction

The notion of metric space, introduced by Frechet [6] in 1906, is one of the useful topic not only in
mathematics but also in several quantitative sciences. Due to its importance and application potential,
this notion has been extended, improved and generalized in many ways. An incomplete list of such
attempts are following: symmetric space, b-metric space, partial metric space, quasi-metric space, fuzzy
metric space, dislocated metric space, dislocated quasi-metric space, right and left dislocated metric
spaces etc.

In 1922, Banach proved a fixed point theorem for contraction mapping ina complete metric space.
Banach contraction theorem is one of the pivotal results of functional analysis. It has many applications
in various fields of mathematics such as differential equations, integral equations etc. After Banach
contraction theorem number of fixed point theorems have been es- tablished by various authors and they
made different generalizations of this theorem.

The concept of dislocated metric (d-metric) was introduced by Hitzler and Seda in [15,16] which is
very useful in Logic Programming Semantics. With the passage of time many papers have been
published concerning fixed point and common fixed point theorems satisfying certain contractive
conditions in dislocated metric space (see [16]-[24]).

Branciari [2] introduced the notion of contraction of integral type and proved first fixed point theorem for this
class of mapping. Further results on this class of mappings were obtained by Rhoades [24], Aliouche[3], Djoudi
and Merghadi [5] and many others.

Sessa [27], initiated the tradition of improving commutativity conditions in metrical common fixed point
theorems. While doing so Sessa [27] introduced the notion of weak commutativity. Motivated by Sessa [26],
Jungck [9] defined the concept of compatibility of two mappings, which includes weakly commuting mappings
as a proper subclass. Jungck and Rhoades [13] introduced the notion of weakly compatible (coincidentally
commuting) mappings and showed that compatible mappings are weakly compatible but not conversely. Many
interesting fixed point theorems for weakly compatible maps satisfying contractive type conditions have been
obtained by various authors.In this paper, we have established some common fixed point results of integral
type contractive conditions using the concept of compatibility, weak compatibility and commutativity in
complete dislocated metric (d-metric) spaces. Our obtained results generalize some well known results of
the literature.

2. Preliminary Notes
We begin by recalling some basic concepts of the theory of dislocated metric (d-metric) spaces.

Throughout this work R* represent the set of non-negative real numbers. Now, we collect some known
definitions and results from the literature which are helpful in the proof of our results.

Definition.2.1: Let X be a nonempty set. Suppose that a mapping d: X x X —» Rt satisfies:
W) [ o)de =0V x,y € X
@) [ ode = [{°7 ot =0 x = y
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iy [1*7o@)de = [0 o(t)dt
) [ o@)de < [1%P pe)de + [ (e)de for all x, v,z € X

0
Then d is called a metric on X and (X, d) is called a metric space. If d satisfies the conditions from(ii)-
(iv),.then d is said to be dislocated metric (OR) shortly (d-metric) on X and the pair (X, d) is called
dislocated metric space. If d satisfies only (ii) and (iv), then d is called dislocated quasi-metric (OR)
shortly (dg-metric) on X and the pair (X, d) is called dislocated quasi-metric space.
Where ¢ : R* —»R"is a Lebesque integrable mapping which is summable on each compact subset of
R*, non-negative and such that for any s > 0, fos(b(t)dt >0

Note. The above definition change to usua1| definition of metric space if @(t) =1

It is clear that every metric space is dislocated metric and dislocated quasi metric space but the converse
is not true. Also every dislocated metric space is dislocated quasi-metric space but the converse is not
necessarily true.

Definition 2.2 A sequence {x,} in a d-metric space (X, d) is called a Cauchy sequence if for given € > 0,
there exists ny € N such that for all m.n = ny,we have d(x,,, x,) < €.

The following simple but important results can be seen in[11].

Definition 2.3 A sequence in d-metric space converges if there exists x € X such that d(x,,x) - 0 as
n — oo,

Definition 2.4 A d-metric space (X, d) is called complete if every Cauchy sequence is convergent.
Definition 2.5 Let (X,d) be a d-metric space. A map T:X — X is called contraction if there exists a
number A2 with 0 < 1 < 1 such that d(Tx, Ty) < Ad(x,y).

Branciari [2] proved the following theorem in metric spaces.

Theorem 2.1. Let (X, d) be a complete dislocated metric space fora €(0,1). Let T: X —-X be a mapping
such that for allx,y € X satisfying

[T omdt < off Y g0t
where ¢ : R* —R*is a Lebesque integrable mapping which is summable on each compact subset of
R*, non-negative and such that for any s > 0, fos(b(t)dt > 0.

Definition 2.6 Let A and S be two self r‘rTL\ppings on a set X. Mappings A and S are said to be
commuting if ASx = SAx Vx € X.

Definition 2.7. Let S and T be mappings of a dislocated metric space (X, d) into itself. Then (S, T) is said to
be weakly commuting pair if

d(STx, TSx) < d(Tx, Sx) for all x € X.

Obviously a commuting pair is weakly commuting but its converse need not be true as is evident from the
following example.

Example 2.1. Consider the set X = [0, 1] with the usual metric. Let Sx = % and Tx = ﬁ for every x € X. Then
forall x e X
STX=L, TSx = — .

4+2x 4+x

Hence ST # TS. Thus S and T do not commute.

Again
d(STx, TSx) = X il X
(STx, X)_4+2x 4+xI T (4 +x)4+2%)
XZ X X
=-——=d(S8x, Tx),

— (4+2x) 2 2+x
and so, S and T commute weakly.
Obviously, the class of weakly commuting is wider and includes commuting mappings as subclass.
Definition 2.8. Two self mappings S and T of a complete dislocated metric space (X, d) are compatible if and

fod(STx"’Tsx”) @(t)dt = 0 whenever {x,} is a sequence in X such that 1111_)rr010 Sx, = 711_)1’1010 Tx, =t for some

t € X. Jungck-Rhoades [13] obtained the concept of weakly compatible as follows:

Definition 2.9. Let S and T be self maps ofaset X. If w = fx = gx for some x in X, then x is called a coincidence
point of f and g, and w is called a point of coincidence of f and g.

Definition 2.10. Let A and S be mappings on d-metric space (X, d), then A and S are said to be
weakly compatible mappings if they commute at their coincident points such that Ax = Sx implies
ASx = SAX. The point x € X is called coincident point of A and S. It is easy to see that compatible
mapping commute at their coincidence points.

Lemma 2.1. Let A and B be weakly compatible self maps of a set X. If A and B have a unique point of
coincidence w = Ax = Bx, then w is the unique common fixed point of A and B.

Example 2.2..

Let X = [0, 3] be equipped with the usual d- metric space d(x,y) = |x — y|.

Define S, T: [0, 3] - [0, 3] by

only if lim
n—-oo
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_(x, x€]0,1) _(3—x, x€[0,1)
Sx_{S,xE[l,S] and Tx_{3, x €[1,3]
Then for any x € [1, 3], STx = TSx, showing that S and T are weakly compatible maps on [0, 3].
Proposition 2.1 Let S and T be compatible mappings from a d-metric space (X, d) into itself. Suppose
that
lim Sx,, = limTx, = x for some x € X.

n—oo n—oo

if S is continuous then limTSx, = Sx.

n—-oo
Theorem 2.2 Let (X,d) be a complete d-metric space and letT: X —» X be a contraction mapping, then
T has a unique fixed point.
Definition 2.11. The function @ : R* —R* s called subadditive integrable function if and only if for all
a, b e RY,
[P o@de < [ o@de + [ 0e)de
Example 2.3. Let d(x,y) = |[x — yland ¢(t) = ﬁ forall t > 0. Then for alla,b € R*,
B =m@+b+1), [ 5o = In(a+ 1), [ 5= = In(b + 1),
Sinceab = 0,thena+b+1<a+b+1+ab=((a+1)(b+1).
Therefore, In(a+b+ 1) <iln(a+ 1)(b+1) =In(a+ 1) + In(b + 1) This shows that ¢ is an example of sub
additive integrable function.
Definition 2.12.Let A and B be two self-mappings of a dislocated metric space (X,d). Then, A and B are
said to be occasionally weakly compatible (owc) if there is a point x € X which is coincidence point of
A and B at which A and B commute.
Example 2.4. Let us considerX = [2.20] with the dislocated metric space (X,d) defined by d(x,y) =
(x — y)?. Define a self-map A and B by
AQRR)=2atx=2and A(x) =6 forx > 2
B(2)=2atx=2,B(x) =12for2 <x <5and B(x) =x — 3 for x > 5.
Now, A(9) = B(9) = 6, besides x = 2 , x = 9 is another coincidence point of A and B.
AB(2) = BA(2) but AB(9) = 6,BA(9) =3, AB(9) # BA(9) Therefore A and B are owc but not weakly
compatible. Hence weakly compatible mappings are owc but not conversely.
Lemma 2.2. Let (X,d) be a semi-metric space. If the self mappings A and B on X have a unique point of
coincidence w=Ax=Bx, then w is the uniqgue common fixed point of A and B.

3.Main Results

We establish a some common fixed point results of integral type contractive conditions using the concept
of compatibility and commutativity in complete dislocated metric (d-metric) spaces, which improves and
extends similar known results in the literature.

Theorem 3.1 Let (X,d) be a complete dislocated metric space. Let 4,B,S,T,P,Q:X — X satisfying the
following conditions

(i) AB(X) € Q(X) and ST(X) < P(X) .(3.1)
(ii) The pairs (4B, P) or (ST, Q) are compatible. v (3.2)
iy [P omde < a [T e@de + B [ET ode +y [T o) dt +

w PSP g@yde + 8 LA 9@ya e (3.3)

for all (x,y) € X x X where @:R* - R* is a Lebesgue integrable mapping which is summable, non-negative
and such that

Jy ®(®)dt > 0 for all €> 0. ... (3.9)
where o, 3,7, 1,6 20,0 <a+B+y+2u+28<1

If any one of AB, ST, P and Q is continuous for all x,y € X, then AB, ST, P and Q have a unique common
fixed point in X. Furthermore, if the pairs (A,B), (A,P), (B,P), (S,T), (S,Q) and (T,Q) are commuting mappings
then A, B, S, T, P and Q have a uniqgue common fixed point in X.

Proof: Using condition (3.1), we define sequences {x,} and {y,,} in X by the rule

Yan+1 = QXzn41 = ABXxy, @nd yon = Pxop = STXp 1 ...(3.5)
Assume also that y,, # y,n4q for all n

Now

fod(J’Zn+1v3’2n) @(t)dt — fod(ABxZn.STxZn—l) @(t)dt

< afod(szn.Aszn) @(t)dt + ‘BfO(QXZn—l,STXZn—Q @(t)dt + yfod(szn'QXZn—ﬂ ¢(t)dt +

'ufod(szn,STxZn—ﬂ (Z)(t)dt + 6f0d(Aszner2n—1) (Z)(t)dt

< afod(hn,hnﬂ) O(t)dt +8 fod(nn—phn) O(t)dt + yfod(YZn»yZ‘n—l) B(t)dt +

u fod(}’zn.mn) B(t)dt + 6f0d(yzn+1'yzn_1)®(t)dt
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Hence
fod(YZn+1 Y2n) @(t)dt < %J‘dmhn‘)@n—l) @(t)dt
N fod(y2n+1:3’2n) B(t)dt < hfod(yzn'yzn_l)Q)(t)dt
where
+y+20+6
h = B+y a ) <1
1—a—26

This shows that
fd(ZVn+1IJ’n)®(t)dt < hfod(Yn.ZYn—i) @(t)dt < h2 fod(J/n—len—z) @(t)dt <..<hm fod(YLYO) @(t)dt

0
For every integer g > 0 we have

fod(J’n+q:ZVn) @(t)dt < fod(.'Vn+quYn+q—1) @(t)dt ot fod(J/n+2vJ’n+1) @(t)dt + fod(Yn+1’J’n)®(t)dt
< (hlJ—l 4+ 4+ R2+h+ 1) fod(ynn.yn)@(t)dt

<(h9 14 +h2+h+ 1" fod(“'y")@(t)dt
Hence h < 1,s0 h™ - 0 as n — oo.
Therefore, fod(y"""'y”) B(t)dt » 0 = d(Yniq¥n) = 0, @S 1 - 0.
This implies that {y,} is a Cauchy sequence.
Since X is complete, so there exists a point z € X such that {y,,} - z.
Consequently subsequences
{ABx33}, {Px2,}, {STxon1} and {Qxzpn41} > 2 €X ...(3.6)
Let us assume that P is continuous. Since the pair (4B, P) is compatible on X so by proposition 2.1 we
have
P?x,, and ABPx,,, » Pz asn — . ...(3.7)
Now consider

fd(ABxZn,STXZH_l) Q)(t)dt < afod(PZXZn.ABPXZn)Q)(t)dt +ﬁ fod(QXZn—l,STXZn—ﬂ @(t)dt + yfod(szzn'QJCzn—l) Q)(t)dt +

0
Hfod(pzxzn,Sszn-1)®(t)dt n 6fod(ABPx2n,Qx2n_1) (t)dt
Now taking limit as n - o0 and using conditions (3.6) and (3.7) we have
d(Pz,z) < yd(Pz,z) + ud(Pz,z) + 6d(Pz,z) = (y + u+ 6)d(Pz, z),
which is a contradiction, since (y + u+ 6) # 1.
Hence d(Pz,z) =0= Pz = z.
Now we show that z is fixed point of AB. For this consider

fod(ABz,STXZn_l) (Z)(t)dt < afod(Pz,ABz)w(t)dt +B fod(szn_l'Sszn_l)Q(t)dt + yfod(PZ'szn_l)(D(t)dt +

#fod(Pz'Sszn_l)Q)(t)dt + afod(ABZ,QXZn—l) @(t)dt

_ afod(z,ABz) O(t)dt +8 fod(szn—LSTxZn—ﬂ O(t)dt + J-Od(z,QxZn_l) o()dt +

#fod(z,Sszn_ﬂ O(t)dt + afod(ABZ,szn—l) B(t)dt

Taking limit as n —» o we have,
[EEED gt < a [4P p(e)de +6 | p(©)dt = (a + &) [ ‘" o)t
which is a contradiction, since (a + 6) # 1. Therefore d(ABz,z) = 0 = ABz = z.

As AB(X) c Q(X), so there exists a point u € X such that z = ABz = Qu.
Consider

fd(ZSTu) (Z)(t)dt _ J«d(ABz ,STu) @(t)dt
< afd(QZABZ) (Z)(t)dt +ﬂ fd(QuSTu) @(t)dt +]/fd(PZ ,Qu) @(t)dt + " J-d(PZSTu) @(t)dt + 6,de(ABZ,Qu) Q)(t)dt
= a [/ ode+p [ 0@)dt +y [P ode + p [T o@)de + 6 [V o)t

0
< Qa+ B+ 2y +p+28) [(T o)dt,
which is a contradiction since (2a + B + 2y + u + 26) # 1.
Hence d(z,STu) = 0 = z = STu. By above relations, we obtain
z=ABz = Qu = Pu = STu ‘
Since the pair (ST, Q) is compatible on X, so d(STQu,QSTu) =0 = STQu = QSTu. Hence, STz = Qz.
Now we show that z is the fixed point of Q.
For this consider

fod(z,Qz) o()dt = fod(ABz,STz)Q(t)dt
afd(QzABz) O()dt +8 fd(QzSTz)w(t)dt + yfd(Pz Qz)@(t)dt +u fd(PzSTz)w(t)dt + 8fd(ABz QZ)(Z)(t)dt
a [T ode +B [T o de +y [P0 o)t + p [T p(0)de + 8 [L%P p(0)de

= 2a fo‘“z owde +28 [F“ o)t +y [F7P 9@)de +p [T p0)de + 8 [FE o(n)de
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< Qa+28+y+p+d) [ owat

which is a contradiction, since Qa +28+y+u+68) # 1.

Hence. d(z,Qz) = 0 = Qz = z. Therefore Pz = Qz = STz = ABz = z. Hence, z is the common fixed
point of the mappings AB,ST,P and Q.

Uniqueness: Let z and v be two common fixed point of the mappings AB,ST,P and Q. Now by
condition 3 we have

fd(zv) @(t)dt _ fd(ABZSTv) @(t)dt
fd(PzABZ) @(t)dt +ﬁ fd(QvSTv)
af, 9 o)t +5 J; 9 gyt +v ) ) e + I,

< Qa+28+y+p+d) [[¥o@ade

which is a contradiction since 2a +28 +y +u+96) = 1.

Sod(z,v) =0 = z=wv. Thus z is the unique common fixed point of the mappings AB,ST,P and Q.
Finally, we prove that z is also a common fixed point of 4, B, S, T, P and Q. Let both the pairs (4B, P) and (ST, Q)
have a unique common fixed point z.

Az = A(ABz) = A(BAz) = AB(Az), Az = A(Pz) = P(Az)

Bz = B(ABz) = B(A(Bz)) = BA(Bz) = AB(Bz), Bz = B(Pz) = P(Bz),

which implies that (AB, P) has common fixed points which are Az and Bz.

We get thereby Az = z = Bz = Pz = ABz.

Similarly, using the commutativity of (S,T), (S, Q) and (T,Q), Sz = z = Tz = Qz = STz can be shown.

Now, we need to show that Az = Sz (Bz = Tz).

By using condition (3.3), we have

fd(AZ ,S2) O(t)dt = fd(A(BAZ) ,S(TSz)) o(t)dt
_ fd(AB(AZ).ST(SZ)) B(t)dt
o fod(PAz,ABAZ) B(t)dt +Bf o(t)dt + ]/f
fd(PSZ.STSZ) O(O)dt + 6 fd(ABAZ’QSZ) @(t)dt

0
fd(AZ ,AZ) da(sz,5z) @(t)dt + ¥ J-d(Az ,S7)

<a pdt +y [F77 o de + p [T

N pyde + 6 [

o(e)de + 6 [ P77 o) dt
@) g Y de

d(QSz,STSz) d(PAz,QSz)

<

@(t)dt +

d(Az,Sz)

B(t)dt +p |,
5fd(AZSZ) @(t)dt

SQa+28+y+p+d) o(t)dt,
which is a contradiction since Qa +28 +y +u+98) # 1.
Hence,
fd(Azsz)(Z)(t)dt =0=d(4z,52) =0=> z = Sz.
Similarly, Bz = Tz can be shown.
Consequently, z is a unique common fixed point of 4,B,S,T, P and Q.
This completes the proof of the theorem.
Now we have the following corollaries
If we put AB = A andS7= B in the above Theorem 3.1, then the theorem is reduced to the following
corollary.
Corollary 3.1 Let (X,d) be a complete dislocated metric space. Let A4,B,P,Q:X — X satisfying the
following
conditions
() AX) € Q(X) and B(X) € P(X)
(ii) The pairs (4, P) or (B, Q) are compatible.

Giy  [“Powdt < a [* T o)dt + B fd(Qy B 5 t)de + yfd(P" W) ) dt + ufd(P" BV 6(6)dt +

0 0
5 fod(Ax.Qy) O(t)dt

for all (x,y) € X x X where @:R* —» R* is a Lebesgue integrable mapping which is summable, non-negative
and such that
J5 @(t)dt > 0 for all €> 0.
where o, 3,7, 1,6 20,0 <a+B+y+2u+28<1
If any one of A, B, P and Q is continuous for all x,y € X,then A, B, P and Q have a unique common fixed
point in X.
If we put Q = P in the above Corollary 3.1, then the theorem is reduced to the following corollary
Corollary 3.2 Let (X,d) be a complete dislocated metric space. Let A4,B,P:X — X satisfying the
following conditions
0) A(X) € P(X) and B(X) € P(X)
(i) The pairs (4, P) or (B, P) are compatible
1924
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o(O)dt + p [P

(III) fd(Ax,By) @(t)dt < afd(Px,Ax) @(t)dt n ﬁfod(Py,By) @(t)dt + yfd(Px,Py) .

0 0 0
8 [ p(t)dt
for all (x,y) € X x X where @:R* - R* is a Lebesgue integrable mapping which is summable, non-negative
and such that
Jy ®()dt > 0 for all €> 0.
where o, 3,7, 1,6 =20, 0<a+B+y+2p+25 < 1.
If any one of A, B and P is continuous for all x,y € X,then A, B and P have a unique common fixed point
in X.
If we put B = A4 in Corollary 3.1, then we obtain the following corollary.
Corollary 3.3 Let (X, d) be a complete dislocated metric space. LetA,B,I: X — X satisfying the following
conditions
() AX) € Q(X) and A(X) € P(X)
(i) The pairs (4, P) or (4, Q) are compatible.
iy [ o@de <a [T o@de + B[P ot + [1T p)de + [

0

8 [ g(t)dt
for all (x,y) € X x X where @:R* - R* is a Lebesgue integrable mapping which is summable, non-negative
and such that
J5 8(t)dt > 0 for all €> 0.
where o,3,y,1, 6 20,0 <a+B+y+2u+25 < 1.
If any one of A,P and Q is continuous for all x,y € X, then A,P and Q have a uniqgue common fixed point
in X.
If we put Q = P and B = A in the above Corollary 3.1,then we obtain the following corollary
Corollary 3.4 Let (X,d) be a complete dislocated metric space. Let 4, P: X —» X satisfying the following
conditions
0] AX) € P(X)
(ii) The pairs (4, P) are compatible.

iy [ omde < a [T 9@de+ g LI 9@de + y [T o@de + [T p0)de +

§ [ o(tyae
for all (x,y) € X x X where @:R* - R* is a Lebesgue integrable mapping which is summable, non-negative
and such that
J5 8(t)dt > 0 for all €> 0.
where o, 3,7y, 1,6 =20, 0<a+B+y+2p+26<1
If any one of A and P is continuous for all x,y € X, then A and P have a unique common fixed point in X.
If we put Q = P =1 in the above Corollary 3.1, then the theorem is reduced to the following corollary.
Corollary 3.5 Let (X, d) be a complete dislocated metric space. Let 4,B,I: X - X satisfying the following
conditions
(HAX)cS Xand B(X) S X
(ii) The pairs (4,1) or (B,I) are compatible.
(iii) fod(Ax'By) P(t)dt < afod("'Ax) o()dt + B fod(y’By) P(t)dt + fod(x’y) P(t)dt + ufod(x’By) P(t)dt + 6f0d("’y) P(t)dt
for all (x,y) € X x X where @:R* - R* is a Lebesgue integrable mapping which is summable, non-negative
and such that
J5 @(t)dt > 0 for all €> 0.
where o,B,yv, 1,6 20,0 <a+B+y+2p+26 <1.
If any one of A and B is continuous for all x,y € X,then A and B have a unique common fixed point in X.
Now we establish a some common fixed point results of Ciric’s [4] type contractive conditions using the
concept of weak compatibility and commutativity in complete dislocated metric (d-metric) spaces, which
improves and extends similar known results in the literature.

@(t)dt +

@(t)dt +

Theorem 3.2 Let (X,d) be a complete dislocated metric space. Let 4,B,S,T,P,Q:X — X satisfying the
following conditions

(i) SX) € PQ(X) and T(X) € AB(X) ...(3.8)
(ii) The pairs (S,A4B) or (T, PQ) are weakly compatible. — ——n 3.9
(i) J; ™ otyde < hmax{ [T o@yde, [0 pwyde, [T gyt

fg[d(ABx,PQy)m(PQy,Sx)] (Z)(t)dt} _____ (3.10)

forall (x,y) eXxX and 0 <h < ;,where @:R* - R* is a Lebesgue integrable mapping which is summable,
non-negative and such that
1925
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J5 8(t)dt > 0 for all €> 0. .. (3.11)

If any one of AB, ST, P and Q is continuous for all x,y € X, then, AB, ST, P and Q have a unique common
fixed point in X. Furthermore, if the pairs (A,B), (B,S), (P,Q) and (T,Q) are commuting mappings then A, B, S,
T, P and Q have a unique common fixed point in X.

Proof: Using condition (3.8) we define sequences {x,} and {y,} in X by the rule

Yent+1 = ABXzniz = TXopyz @Nd yon = PQX2n41 = SXxaq ...(3.12)
Assume also that y,, # y,n4q, fOr alln
Now

fod(J’2n'YZn+1) B(t)dt = fod(szn,szn+1) B(t)dt

Sh.max{{fod(Aszn.sznn) d(t)de, fod(Pszn+1,szn+1) B(t)dt, fod(Aszn,szn) B(t)dt,

1
f()E[d(Aszn.Pszn+1)+d(PQx2"+1'Sx2n)] @(t)dt}

< h.max{{fod(J/Zn—1'y2n+1) B(t)dt, fod(yzn,YZn+1))) B(t)dt, fod(yzn—bhn) B(t)dt,

f()%[d V2n-1.Y2n)+dW2n,Y2n)] @(t)dt,}

Sh.max{fod(yzn—1'J’2n)+d(YZn.J’2n+1) B(t)dt, fod(J’zn'YZn+1)) B(t)dt, fod(J’zn—LJ’zn)) B(t)dt,

f()%[d 2n-1.Y2n)+dY2nY2n+1)+dVan+1.Y2n)] Qj(t)dt}

Or
fod(YZn'J’zn+1) G(t)dt <h [fod(YZn—LJ/zn) B(t)dt + fod(J’zn-YZn+1) @(t)dt],
which implies that

J-Od(LVzn,Y2n+1) O(t)dt < ﬁfod(hn—bhn)@(t)dt

Let k=-—<1,

1-h
So
J-Od(LVzn,Y2n+1) O(t)dt < kfod(yzn—bhn) B(t)dt
N fod(}’Zn+1;J/2n) O(t)dt < hfod(J/sz’zn—ﬂ@(t)dt
This shows that

fod(J/n+1.}/n)®(t)dt < hfod(Yn.Yn—O B(t)dt < h2 fod(J’n—LYn—z) g(t)dt < - < h" fod(.VL.VO) B(t)dt

For every integer g > 0 we have
fod(J/n+qJ’n) B(t)dt < fod(J/n+q'3’n+q—1) B(t)dt + -+ fod(J/n+2;J/n+1) B(t)dt + fod(yn+1»J/n) O(t)dt
< (hq—l 4+ h2+h+ 1) fod(Yn+1:3’n) (Z)(t)dt

< (R + o+ 2+ R+ DR [0 g6 dt
Hence h<1,s0 h™ > 0asn — .
Therefore, fod(y””'yn) P(t)dt - 0= d(Yn4q¥n) > 0, as 1 > 0.
This implies that {y,} is a Cauchy sequence.
Since X is complete, so there exists a point z € X such that {y,,} - z.

Also the sub-sequences {y,,} and {y,,+,} converges to z as n tends to infinity. Therefore
{Sx2n} {PQx2n11} {Tx2n 41} @nd {ABxppni2} > 2 € X -(3.13)

Since T(X) € AB(X), there exists a point u € X such that ABu = z. We show that
ABu=Su=z
From condition (3.10), we have

fd(Su,z) (Z)(t)dt _ fd(Su,TxZnH) Q)(t)dt

0 0

<h.max{ [}/ “7 T2 g(e)ae , [ COm T gya, [1AE g(yar,

1
fogld(ABu.PQxZnﬂ)m(Pox2n+1.5u)] o(t) dt}
Taking limit as n - oo we have
[2S2) (e sh.max{fd(z'z)

0 0

1

@(t)dt,fd(Z’Z) (Z)(t)dt, fd(z,Su) @(t)dt, fOE[d(z,z)+d(z,Su)] Q)(t)dt}

0 0
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Sh.maX{fod(Z'Su)+d(Z'Su) @(t)dt, fod(z,Su)+d(z,Su) @(t)dt, fod(z,Su) @(t)dt,

f%[d(Z,Su)+d(z,Su)+d(z,Su)] @(t)dt}

0
<h.max{2 [ o()de, 2 [{“ g(oyde, [ o(0)de, 2 [ o))
< 2h[* gt

0
Since 2h < 1, so the above inequality is possible only if,

dSu,z) =0=>Su=2z

Thus ABu=Su=z

Again, since S(X) € PQ(X), there exists a point v € X such that PQv = z. We show that
PQv=Tv =z

From condition (3.10), we have

fod(z,TU) @(t)dt _ fod(SxZn,Tv) @(t)dt

<h.max{ [y “***™ g(tyae, [ p(e)t,

fod(Aszn.szn) g(t)dt, J'O%[d(Aszn.PQV)+d(PQU,Sx2n)] @(t)dt}

Taking limit as n —» o we have

[T o@de shmax{ ™ o@®)de, [T owyde, [0 oyt [7 @(t)dt}

sh.max{fod(z‘”) Q)(t)dt, fod(z,Tv) @(t)dt, fod(z,Tv)+d(z,T1;) @(t)dt, fo[d(z,Tv)+d(z,Tv)] (Z)(t)dt}
shmax{["“™ o@)de, [{ " p(tydr, 2 [T ow)de, 2 [T o (t)de)

0 0 0 0
< 2h[*“™ g()dt

[d(z,z)+d(z,2)]

d(z,Tv)
0
Since 2h < 1, so the above inequality is possible only if,

d(z,Tv) =0>Tv =1z

Thus PQu=Tv =z

Hence, ABu = Su =Tv = PQv = z.

Since, the pair (S, AB) is weakly compatible, so SABu = ABSu = Sz = ABz.
Now, we show that z is a fixed point of S in the following:

fod(Sz,z) (Z)(t)dt _ fod(Sz,Tv) (Z)(t)dt

<h.max{ [ “**"™ g(t)at, [ “*" p(tyat,

1
fod(ABz,Sz) o(D)dt, fOE[d(ABz,PQv)+d(PQv,Sz)] o(t)d t}

1
<h.max{[;**” o(0)de, [1“7 0(ydt, [ 0(©)de, [ g (eyae]

Sh.maX{fod(SZ'Z) m(t)dt’fod(z,Sz)+d(Sz,z) @(t)dt,
1

fod(Sz,z)+d(z,Sz) @(t)dt, foz[d(Sz,z)+d(Sz,z)+d(z,Sz)] (Z)(t)dt

<hmax{ (""" p(t)dt, 2 [**" o)t 2 [} o(0)de 2 {7 o (0)dt]
< 2h fod(sz'z) B(t)dt

Since 2h < 1, so the above inequality is possible only if,
d(§z,z2)=0=>S8Sz=z

Thus ABz =Sz =z

Again, the pair (T, PQ) is weakly compatible, so TPQv = PQTv = Tz = PQz.
Now, we show that z is a fixed point of T as:

fd(z,Tz) (Z)(f)dt _ fd(Sz,Tz) @(t)dt

0 0
<h.max{[;"“**™ g(e)de , [ 7" p(t)at,

1
fod(ABz,Sz) @(t)dt, foi[d(ABz,PQz)+d(PQz,Sz)] @(t)dt}

d(z,Tz)+d(Tz,2)]

@(t)dt ) fd(z,z)

0

@(t)dt ’ fd(Tz,Tz)

Sh.max{ [rers N

1
) o0y, [ Q)(t)dt}
Sh.rnax{foal(z,Tz) @(t)dt, fod(Tz,z)+d(z,Tz) @(t)dt, fod(z,Tz)+d(Tz,z) (Z)(t)dt, fod(z,Tz) Q)(t)dt}

sh.max{ fod(z’")(z)(t)dt,z fod(z‘”)(z)(t)dt,z fod(z'”) g(t)dt, fod(z'”) (Z)(t)dt}
< 20 %% g (1)t

d(Sz,z)
0

Since 2h < 1, so the above inequality is possible only if,
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d(z,Tz)=0=>Tz=1z
Thus ABz=PQz=Sz=Tz=1z
Hence, z is the common fixed point of the mappings AB,PQ,S and T.
Uniqueness: Let z and w be two common fixed point of the mappings AB, ST, P and Q. Now by
condition 2 we have
fod(z,w)w(t)dt _ fod(Sz,Tw) Q)(t)dt

<h max{[;" "™ peye, [T oy, [ gty

f%[d(ABz,PQw)Hi(PQW,Sz)]

: (D(t)dt}

1
Sh.max{ fod(z'W) ode, [*“ o)dt, [*“7 @(t)dt, fg[d(z'w)”(w'z)] (Z)(t)dt}

0 0

<hmax{[;'“ o (0)de, 2 [} p(tydt, 2 [ o(©)de, [ o (t)dt]
< 2h [ g(t)dt,

0
which is a contradiction, since 2h < 1.So d(z,w) = 0 implies z=w. Thus z is the unique common
fixed point of the mappings AB, PQ,S and T.
Now, we need to show that Bz = Qz.
By using condition (2), we have

fod(Bz,Qz) @(t)dt _ fod(BSz,QTz) @(t)dt _ fod(SBz,TQz) Q)(t)dt

<h .maX{de(ABBZ'TQZ) Q)(t)dt, fod(PQQz,TQz) Q)(t)dt, fod(ABBz,SBz) Q)(t)dt,

J-%[d(ABBZ,PQQz)+d(PQQz,SBz)]

; o(0)dt}

<h .maX{de(BABZ'QTZ) Q)(t)dt,fod(QPQz'QTZ) @(t)dt’fod(BABz,BSz) (Z)(t)dt,

f%[d(BABz,QPQZ)+d(QPQz,BSz)

; 'o(ode]

< h max{[;"“* % g(0)de, [0 p(0)de, [ p(tydt,

f%[d (Bz,Qz)+d(Qz,Bz)

; 'o(dt]

<h.max{[;"®*%? g(e)de , [0 g (1)ae,

J-Od(Bz.QZ)+d(QZ'BZ) B(t)dt, fd(BZ'QZ) Q(t)dt}

0

< homax {["*%% p(©)dt 2 [} 7% o)t

2fod(Bz,Qz) @(t)dt’fod(Bz,Qz) @(t)dt}

< 2h fod(Bz‘Qz) g(t)dt,

which is a contradiction, since 2h < 1.
Hence,

d(Bz,Qz) =0 = Bz = Qz.

Now, we need to show that z = Qz.

By using condition (3.10), we have

J-Od(z,Qz) (Z)(t)dt _ fod(Sz,QTz)Q)(t)dt _ fod(Sz,TQz) (Z)(t)dt

<h .max{ JEABETD g (e, [AEOTD g, [14PD gy,

1
J-OE[d(ABz,PQQz)+d(PQQz,Sz)] (D(t)dt}

<h .max{ [EERT gyt , [P gyde, [T o),
J-O%[d(Z.QPQZHd(QPQZ.Z)] B(t)dt

< h .max{ [ “*? p@)de, [ o0yt [P o),

1
fg[d(QOz)+d(Qz:z)] @(t)dt

<hmax{ [ % p(ydt, [P (e,
fod(z,Qz)+d(Qz,z) (Z)(t)dt, fod(z,Qz)w(t)dt}
sh.max{ fod(Z‘Qz) @(t)dt,2 fod(Z’Qz) @(t)dt,?2 fod(Z'Qz) o(t)dt, fod(Z'Qz) (Z)(t)dt}

< 2hf0d(Z‘Qz) @(t)dt,
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which is a contradiction, since 2h < 1.
Hence,

d(z,Qz) =0 =z =Qz.

Now, we need to show that Bz = z.

By using condition (3.10), we have

fd(Bz,z)Q(t)dt — fod(BSZ,TZ)Q)(t)dt _ J-d(SBZ,TZ) B(t)dt

0 0
d(ABBz,T.
<h .max{f0 (ABB2T2)

f%[d(ABBz,PQZ)+d(PQZ,SBz)
0

@(t)dt,fd(ABBZ'SBZ) Q)(t)dt,

0

Q)(t)dt , fod(PQz,Tz)

] (D(t)dt}

< h max{[;"“**? p(e)ae, [ o()at, [ P gy,

J-O%[d(BABZ,Z)+d(Z,BSZ)] o) dt}
< h max{[;"**? g0y, [ o(0)de, [ p(t)dt,
fO%[d(Bz,z)+d(z,Bz)] 8(t)d t}
<hmax{ ;"7 p(0)de , [ “F T g(nyar,
fod(Bz,z)+d(z,Bz) @(t)dt, fod(Bz,z) @(t)dt}
<hmax{ ("™ p(0)de, 2 [} (v, 2 [} "7 owyt, {7 (t)dt)
< 2 [ g0y,
which is a contradiction, since 2h < 1.Hence d(Bz,z) =0 = Bz = z.
Thus PQz=Pz=Qz=zand ABz=Az=Bz =12z

Therefore Az=Bz=Sz=Tz=Pz=Qz =12z

Consequently, z is a uniqgue common fixed point of A, B, S, T, P and Q.

This completes the proof of the theorem.

Now we have the following corollaries

If we put AB = A and PQ= B in the above Theorem 3.2, then it is reduced to the following corollary.
Corollary 3.6 Let (X,d) be a complete dislocated metric space. Let A,B,S,T:X — X satisfying the
following conditions

(i) S(X) € B(X) and T(X) € A(X)

(if) The pairs (S, A) or (T, B) are weakly compatible.

1
(|||) fod(Sx,Ty) (Z)(t)dt < h.max{fod(Ax,Ty) @(t)dt, fod(By,Ty) (Z)(t)dt, fod(Ax,Sx) Q)(t)dt, fg[d(Ax,By)+d(By,Sx)] Q)(t)dt}

forall (x,y) eXxX and 0 <h< %,where @:R™ - R* is a Lebesgue integrable mapping which is summable,

non-negative and such thatfoE @(t)dt > 0 for all €> 0.
If any one of A, B, S and T is continuous for all x,y € X,then A, B, S and T have a unique common fixed
point in X.
If we put A = B in the above Corollary 3.6, then the theorem is reduced to the following corollary.
Corollary 3.7 Let (X,d) be a complete dislocated metric space. Let 4,5, T:X —» X satisfying the
following conditions
(i) S(X) < AX)and T(X) € A(X)
(i) The pairs (S,A) or (T, A) are weakly compatible.

1

(iii)fod(Sx,Ty) (Z)(t)dt < h.max{fod(Ax'Ty) @(t)dt,fod(Ay,Ty) @(t)dt,fod(Ax'SX) @(t)dt, foi[d(Ax,Ay)+d(Ay,Sx)] Q)(t)dt}

forall (x,y)eXxX and 0 <h< %,Where @:R* - R* is a Lebesgue integrable mapping which is summable,

non-negative and such that foe(z)(t)dt > 0 for all e> 0.

If any one of A, S and T is continuous for all x,y € X,then A,S and T have a unique common fixed point
in X.

If we put S =T in the above Corollary 3.6, then the theorem is reduced to the following corollary
Corollary 3.8 Let (X,d) be a complete dislocated metric space. Let 4,B,S:X —» X satisfying the
following conditions

(i) S(X) € B(X)and S(X) € A(X)

(i) The pairs (S, A) or (S, B) are weakly compatible.

1
(iii)fod(Sx,Sy) (Z)(t)dt < h.max{fod(Ax,Sy) @(t)dt, fod(By,Sy) @(t)dt, fod(Ax,Sx) @(t)dt, fOE[d(Ax,By)+d(By,Sx)] Q)(t)dt}

forall (x,y)eXxX and 0 <h < %,Where @:R* - R* is a Lebesgue integrable mapping which is summable,
non-negative and such thatfoe @(t)dt > 0 for all e> 0.
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If any one of A,B and S is continuous for all x,y € X,then A,B and S have a unigue common fixed point
in X.

If we put B=Aand S =T in the above Corollary 3.6, it is reduced to the following corollary

Corollary 3.9 Let (X,d) be a complete dislocated metric space. Let 4,5:X — X satisfying the following
conditions

(i) S(X) € A(X) and S(X) € A(X)

(i) The pairs (S, A) is weakly compatible.

("I)fd(SxSy) @(t)dt <h. max{fd(AxSy) @(t)dt fd(Ay ,SY) @(t)dt fd(Ax ,Sx) @(t)dt fz[d(AxAy)Hi(Ay ,5x)] @(t)dt}
forall (x,y) eXxX and0 <h< E,Where @:R*™ - R* is a Lebesgue integrable mapping which is summable,

non-negative and such that foe @(t)dt > 0 for all e> 0.
If any one of A and S is continuous for all x,y € X,then A and S have a unique common fixed point in X.

Now we establish a common fixed point theorem in dislocated metric space with occasionally weakly
compatible which improves and extends similar known results in the literature.

Theorem 3.3: Let (X, d) be a complete dislocated metric space. Let A, B, S, T, P and Q be self mappings of
X such that

(i) {P,AB} and {Q,ST} are occasionally weakly compatible (owc), .. (3.14)
(”) fd(Px ,QY) Q)(t)dt <h. max{fd(ABxSTy) Q)(t)dt _fd(PxABx) @(t)dt fd(QySTy) @(t)dt fd(QyABx) (Z)(t)dt
Y ewart (3.15)

forall (x,y) € X x X,where 0 < h < 1.

Then AB, ST, P and Q have a unigue common fixed point. Furthermore, if AB= BA and ST=TS,then A, B, T,
S, P and Q have a unique common fixed point.

Proof: Since {P,AB} and {Q,ST} are occasionally weakly compatible (owc), then there exists (x,y) €
X X Xsuch that Px = ABx = x,where PABx = ABPx and STy = Qy = y, where, STQy = QSTy.We claim that
Px = Qy. Using condition (ii), we get

d(ABx,STy) d(Px,ABx)

fd(Px ,Q¥) @(t)dt <h. max{f o(t)dt, _f o(t)de, J‘d(Qy STY) o(t)dt, > J-d(Qy ,ABx) o(D)dt,
! fod(Px.STy) O(t)dt } ....... (3.15)
= homax [ p()de 2 [ p(0)de 2 [ o0, 2 [ o0,
: fod(Px ,QY) o(t) dt}

< h.max {fd(Px Qy)(z)(t)dt fd(Px Qy)+d(Qny)®(t)dt fd(Qy Px)+d(Px, Qy)(b(t)dt
2fovl(Qy Px)@(t)dt fd(Px Qy)q)(t)dt}
= h.max { ;" Qy)(b(t)dt D o, [ g@)de, s [ ot
L1 oty de}

= h [1T gy,
which is contradiction, since. 0 < h < 1.
So, fod(Px'Qy) @(t)dt = 0 = d(Px,Qy) = 0 = Px = Qy
Therefore, ABx = Px = STy = Qy. ... (3.16)
Moreover, if there is another point of coincidence z such that z = Pz = ABz. We claim that Pz = Qy. Using
condition (ii), we get

fod(Pz,Qy) (t)dt < h. max{fd(ABZ STy) (t)dt J-d(PzABz) (t)dt fd(QySTy) (t)dt fd(QyABz) (t)dt

%fod(Pz,STy) @(t)dt}
= homax {[; 7 g(0yde 5 [7 7 o0yt 3 [ o(0)de s [P o,
L[ g (eae)
d(Pz,Qy) d(Pz,Qy)+d(Qy,Pz) d(Qy,Pz)+d(Pz,Qy)
< h.max {f o(t)dt > J; o(t)dt > J; B(t)dt,
Efod(QyPZ) @(t)dt, Efod(PZ Qy) @(t)dt}
= homax {["* p@)de, [ o@)de, [{ T g0yt 2 [P o),
1 ~d(Pz,Qy)
E N (Z)(t)dt}
= n [17 g(0)at,
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which is contradiction,since. 0 < h < 1.
So, [1*“® g(t)dt = 0 = d(Pz,Qy) = 0= Pz = Qy
Therefore,
Pz = ABz = STy = Qy. ... (3.17)
Similarily, if there is another point of coincidence v such that v = STv = Qu. It can be easily seen that Pz =
Qv. Therefore
Pz = ABz = STv = Qv.

Also from (3.16) and (3.17), it follows that ABz = ABx. This implies that z = x.Hence, w = ABx =
Px, for w € X, is the unique point of coincidence of AB and P. By Lemma 2.1, w is the unique common fixed
point of AB and P. Hence w = ABw = Pw. Similarly, there is a unique common fixed pointu € X such that
u = STu = Qu.. Suppose that w # u.Then using condition (ii), we get.

[ 9@yde = [E pe)de
< h.max {fd(ABwSTu) @(t)dt _fd(PwABw) Q)(t)dt fd(QuSTu)Q)(t)dt J-d(QuABw) Q)(t)dt,

1 fd(Pw,STu)

L, o(t)dt,}
= homax {["* 0@t 2 [ o0)de, 2 [ o(0)de, 2 [ p(tar,
L o)t
< h.max {fd(w ) @(t)dt fd(wu)+d(uw) @(t)dt J-d(u w)+d(w,u) @(t)dt,
LY o, —fd(wu) o(t)dt}
= h.max f”“W”)as(t)dt [ o@adt, [ ot 2 [ o,
L o)t

- hfod(w'“) B(t)dt,
which is contradiction,since. 0 < h < 1.
So, fd(wu)(Z)(t)dt =0=>dw,u)=0>w=u
Hence, w is the unique common fixed point of AB, TS, P and Q. Finally, we need to show that w is
only the common fixed point of mappings 4, B, T, S, P and Q.
Let both the pairs (P,AB) and (Q, ST) have a uniqgue common fixed point w.
AB= BA ,then for this, we can write
Aw = A(ABw) = A(BAw) = AB(Aw), Aw = A(Pw) = P(Aw)
Aw = B(ABw) = B(A(Bw)) = BA(Bw) = AB(Bw), Bw = B(Pw) = P(Bw),
which implies that (P, AB) has common fixed points which are Az and Bz. We get thereby Aw = w = Bw = Pw =
ABw.Similarly, using the commutativity of (S,T),Sw = w = Tw = Qw = STw can be shown.
Hence A, B, T, S, P and Q have a unique common fixed point.
On the basis of above Theorem 3.3, we have the following corollary.
In the above Theorem 3.3, if we take AB = 4, ST = S, then we have the following corollary.
Corollary 3.10: Let (X, d) be a complete dislocated metric space. Let A, S, P and Q be self mappings of X such
that
(i) {P,A} and {Q, S} are occasionally weakly compatible (owc),

(i) [ o(ydr <hmax{ [/ o@)de,2 [T o(ydr 2 [ o@de, 2 [P oo,

2fd(PxSy) Q)(t)dt}
forall (x,y) € X x X,where 0 < h < 1.
Then A, S, P and Q have a unique common fixed point.
In Corollary 3.10, if we take P = @, then we have the following corollary.
Corollary 3.11: Let (X, d) be a complete dislocated metric space. Let A, P and S be self mappings of X such
that
(i) {P,A} and {P,S} are occasionally weakly compatible (owc),

(I ) fd(Px ,Py) @(t)dt <h. max{fd(Ax ,Sy) @(t)dt _fd(PxAx) @(t)dt fd(Py ,SYy) (Z)(t)dt fd(PyAx) (Z)(t)dt

2fd(Px ,SY) @(t)dt}
forall (x,y) € X x X,where 0 < h < 1.
Then A, P and S have a unique common fixed point.
In Corollary 3.10, if we take P = Q, A = S then we have the following corollary.
Corollary3.12: Let (X, d) be a complete dislocated metric space. Let A and P be self mappings of X such that
(i) P and A are occasionally weakly compatible (owc),
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i) ;" o@yat <hmax{ [ o(oyar, 2 [ p(oyae, 2 [ oae, s 7 o,

0 2Jo

1 d(Px,Ay)
o o)

0

forall (x,y) € X x X,where 0 < h < 1.
Then A and P have a unique common fixed point.
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