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Abstract  
The generation of parity nodes is strongly dependent on data nodes in the erasure codes that are currently in use. The higher the 
tolerance for mistake, and the more people are willing to It is possible that our chances of successfully recovering the original data 
will improve if we are able to increase the number of parity nodes as well. The storage overhead will increase as the number of 
parity nodes increases, and the repair load on data nodes will also increase. This is due to the fact that data nodes are queried often 
in order to assist in the repair of parity nodes at the same time. In the event that a global parity node fails in LRC [25, 26], for 
example, it is necessary to solve all of the data nodes. As a consequence of the "increasing demands on the network's data nodes," 
the amount of time required to process read requests for data nodes would increase more than before. Google search is an example 
of an application that should not be used for retrieving data on a regular basis. "Produces both data and parity nodes, it is possible 
for the latter to take over some of the repair work that is normally done by the former. This is done in an effort to reduce the amount 
of time that is spent waiting." To put it another way, the number of data nodes that may be accessed does not change under any 
circumstances, regardless of whether or not a parity node is operational. When it comes to storage costs, it would seem that parity 
nodes suffer extra expenses. If the design is correct, generating parity nodes by employing parity nodes may help reduce access 
latency without increasing or lowering the storage needs. This is something that we will demonstrate in the coming sections, which 
are over your head. 
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1. Introduction 
 
The last ten years have seen a substantial rise in 
the popularity of a number of online activities, 
including searching, social networking, and online 
shopping. Over the course of each day, we 
generate an enormous quantity of digital data. Both 
the commercial world and the research world are 
struggling with the challenge of building storage 
systems that are both cost-effective and efficient 
(M. Foley, 20128). Because of the increase in the 
amount of data, it has become necessary to 
develop large-scale distributed storage systems. 
To name just a few instances, there is the Hadoop 
Distributed File System (HDFS) and Windows 
Azure Storage (WAS]. With the help of these 
storage systems, it is possible to meet the 
requirements of cloud-scale applications, high-
speed computation, and massive amounts of data 
with excellent dependability and ubiquity. When 
developing a large, distributed storage system, it is 
usual practice to make use of a large number of 
storage devices that are both affordable and 
unstable. These individual nodes are subject to 
failures, and it is typical for storage devices to be 
unstable. Failure is the norm rather than the 
exception  
 
when it comes to these systems, despite the fact 
that they provide significant benefits in terms of 
expanding their capacity (K. Rashmi, 2019) As a 
consequence of this, we face the challenge of 
overcoming frequent system failures and ensuring 

that these systems are both dependable and 
robust. 
 
2. Background of the Study 
 
Redundancy, in the form of replication or erasure 
coding, offers a high degree of failure protection in 
large-scale distributed storage systems (P. 
Gopalan,2019). 
GFS distributes the information across three 
distinct storage nodes, guaranteeing that it may be 
retrieved reliably. It's easy to meet Google's 
frequent reading criteria using this straightforward 
replication strategy. Replication" keeps data 
available and prevents data loss when nodes fail 
due to the high storage needs for a certain level of 
fault tolerance. 
To implement general erasure coding systems, 
files with a given size M may "be partitioned into k 
sections (also referred to as "k nodes"), each with 
a size of M, and encoded into n encoded nodes. 
For a given level of reliability, the storage needs 
may be drastically decreased utilising the erasure" 
coding strategy compared to replication. For 
instance, because to their Maximum-Distance-
Separable (MDS) property, Reed Solomon (RS) 
codes are among the most popular and effective 
storage codes. “Standard code that has a 
codeword" describes this component. Each MDS 
codeword has n nodes, and any combination of 
those k nodes may be used to reconstruct the 
whole text (G. Joshi, 2019). Furthermore, when a 
codeword contains original data nodes, we call it a 
systematic code. In every possible MDS codeword, 
there are k original data nodes and an equal 
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number of "n-k parity" nodes. It is standard practice 
to store codeword nodes on separate storage 
devices in various places to reduce the likelihood 
of failures caused by "common" causes. Shows 
that any three of the six nodes that make up a 
“MDS codeword” may decode the whole 
codeword.1. The code makes sense since d1 
through d3 are not coded. Coding-based large-
scale distributed storage systems typically use a 
code with a fixed size for each codeword and a 
predefined set of (n, k) parameters to facilitate 
operation and maintenance. For Face-HDFS 
books, HDFS uses RS codes (14.0) and for GFS 
II, it uses RS codes (9.6). A codeword consists of 
many files with a set total size in real-world large-
scale distributed storage systems. The consistent 
coding rate allows us to "better investigate" the 
features of the storage system. 
 
3. purpose of the research 
 
Current erasure codes mostly use data nodes to 
generate the parity nodes. It is possible to increase 
failure tolerance and the number of alternatives to 
recover the original data by increasing the number 
of "parity nodes" using this strategy (R. Nelson, 
2019.  Increasing the number of parity nodes will 
lead to higher storage overhead and a heavier 
repair burden on data nodes since they are often 
used to aid with parity node repairs. For instance, 
in LRC, if a global parity node fails, all data nodes 
must be repaired. The "increased workload on data 
nodes" causes read requests to take more time to 
process. A programme that often retrieves data is 
not always desirable, such as. 
One way to cut down on wait times is to generate 
parity nodes alongside data nodes, which will 
transfer part of the repair work from data nodes to 
them. That is, we may increase the number of data 
nodes that can be accessed by simply replacing a 
failed parity node with another parity node. 
However, it seems that the storage overhead for 
parity nodes is larger. As we shall see in the next 
sections, it is possible to generate parity nodes 
with parity nodes to reduce storage overhead 
without raising or decreasing access latency with a 
good design (G. Liang,2018). 
Researchers in this research will look at how well 
"Hierarchical Tree Structure Code (HTSC) and 
High Failure-tolerant Hierarchical Tree Structure 
Code (FH HTSC) will" work. 
 
4. Literature Review 
 
Redundancy is given in large-scale distributed 
storage systems by the use of replication or 
erasure coding, which offers a high degree of 
protection against failure (S. Chen,2018). 
Through the distribution of the information among 
three distinct storage nodes, the GFS system 
guarantees that data may be retrieved in a 
dependable manner. The frequent read needs that 
Google has may be readily handled by using this 
simple replication strategy [6]. The use of 

replication helps to ensure that data is always 
accessible and prevents data loss in the event that 
a node fails. This is because replication requires a 
significant amount of storage space for a relatively 
high level of fault tolerance. 
"Files of fixed size M can be divided into k parts 
(sometimes referred to as "k nodes"), each of 
which is of size M, and encoded into n encoded 
nodes for use in generic erasure code systems," 
according to the definition of the term. Through the 
utilisation of the erasure" coding strategy, it is 
possible to drastically lessen the amount of storage 
that is necessary for a given level of dependability 
in contrast to the replication method. As an 
instance, Reed Solomon (RS) codes are among 
the most extensively used and most effective 
storage codes due to the fact that they possess the 
Maximum-Distance-Separable (MDS) property (Q. 
Shuai,2017). 
A codeword is a component of a "standard code," 
which is an element of the code. In an MDS 
codeword, there are n nodes, and any k of those 
nodes may be used to reassemble the full text 
regardless of which node is chosen. A further point 
to consider is that a codeword is considered to be 
a systematic code if it contains the original data 
nodes. Every viable MDS codeword has k original 
data nodes plus an equal number of "n-k parity" 
nodes [5]. This is the case regardless of the 
codeword. In order to prevent failures that are 
caused by common circumstances, it is standard 
practice to store the nodes of a codeword on 
various storage devices located in separate 
places. 
According to the diagram in Figure 1.1, any three 
of the six nodes that make up a (6,3) "MDS 
codeword” have the ability to decode all of the 
information contained inside the codeword. In light 
of the fact that d1 through d3 are not coded, the 
code is rational. When it comes to storing its data, 
large-scale distributed storage systems that make 
use of coding often use a code that has a preset 
set of (n, k) parameters and a fixed size for each 
codeword. This makes the system simpler to 
manage and run. In HDFS and GFS II, there are 
two different kinds of RS codes that are used: 
(14,10) for Face-HDFS books and (9,6) for GFS II. 
Both of these codes are used to store data. 
According to this definition, a codeword is 
comprised of several files that have a set total size 
when applied to genuine large-scale distributed 
storage systems. Because of the consistent coding 
rate, we are able to conduct a more thorough 
investigation of the properties of the storage 
system. 
 
5. Research Questions 

 
1. What "are the characteristics of latency in 

direct" readings? 
2. Which one is the "best methods for direct 

readings in order to minimise" latency? 
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3. Is there "any correlation between latency 
performance of direct" reads and degraded 
reads. 

 
6. Methodology 
 
When dealing with system failures, one method 
that may be used in distributed storage systems is 
the utilisation of erasure codes and replications. 
Generally speaking, codes that are often used in 
practice are systematic codes, which means that 
each codeword comprises a copy of the data that 
was originally collected. There is also the 
possibility of using erasure coding in Windows 
Azure storage (WAS) systems; however, this is 
only allowed when a file exceeds a certain size, 
such as three gigabytes. In the event that you are 
just interested in a specific section of the file, the 
storage nodes will be able to get it from one of the 
enormous files that the codeword operates with. 
These files are often quite big in practice (we refer 
to these requests as direct reads). The requests for 
k-access reads are another form of requests. In 
this sort of request, each request must read the 
whole file in a codeword and must access at least 
k nodes. The amount of direct and k-access reads 
that are carried out via a distributed storage system 
will determine the latencies that are experienced 
by the system. To the best of our knowledge, this 
is the very first time that direct readings have been 
investigated from a comprehensive standpoint in 
any of the prior studies. 
Latency performance is considered "crucial in 
distributed storage systems, and some studies 
claim that codes can minimise latency in data 
centres, while many other strategies have been 
proposed to reduce latency in distributed storage" 
system configurations. Previously conducted 
research has, for the most part, disregarded direct 
readings and has solely focused on k-access 
information. To our knowledge, there has been no 
investigation into the ways in which RedS may 
expedite direct readings.The Random Scheme 
(RanS) only sends requests to those k nodes in a 
random fashion, in contrast to RedS, which sends 
requests to all n nodes for each k-access read. 
When compared to RanS, RedS necessitates a 
greater time and resource commitment that must 
be made. When it comes to realistic distributed 
storage systems, RanS is a popular choice since it 
is simple to deploy and does not need any extra 
information or resources. This feature makes it an 
attractive option. 
 
7. Results 
 
To simplify matters, we assume a homogeneous 
situation in which the direct read arrival rate for the 
content of each data node is the same and the 
proportion of direct read task for each data node is 
likewise the same, namely x. General read arrival 
rate for data and parity nodes may be obtained with 
little effort using the formulas iJ = x + (1 x)(k 1)p, 
where i = 1, 2,..., k, and p is the parity bit.  

If we write j = k + 1, k + 2, n we get jJ = (1 x) kp. 
We analyse the practical issue that there is no 
direct read to parity nodes, and while the results 
are comparable to our prior work  we make a clear 
distinction between the general read arrival rate of 
data and parity nodes.Latency for direct readings 
can be reduced by performing degraded read jobs 
in a systematic (n, k) MDS-coded storage system 
under the homogeneous condition if and only if the 
code rate is n > k 1 + 1 and k x 1. However, under 
these conditions, the latency for direct reads 
cannot be reduced if the code rate is k k n+k1 k 1 
+ and 0Proof. If all other factors remain constant, 
the latency in a distributed storage system will 
increase as the average rate at which reads arrive 
increases. Comparison is made between the 
performance of degraded readings and that of 
direct read jobs alone (x = 1) in terms of reducing 
delay. If x = 1, then the delay solely" "depends on 
the data nodes, as the general read ar- rival rate 
for each data node is and that for each parity one 
is 0. Reduced read performance occurs in the 
range 0–1. When p(k1) 1, the average read arrival 
rate at a data node iJ, as suggested by Eq we are 
able to delay feedback for each data node. In light 
of p = k, we may write the condition as code rate 
n1 n > k1 + 1. One may alternatively get iJ = 1 + (1 
x) p + (1 x) kip from Eq.  
By plugging these values into Eq. (3.6), we obtain 
the connection between the average data read 
arrival rate and parity nodes, which is given by iJ = 
x (1 x) p + jJ. As long as x (1 x) p 0, the average 
read arrival rate of parity nodes is less than or 
equal to that of data nodes, meaning that the two 
types of nodes may achieve at most the same 
delay. By changing p to k, we get k x 1, which we 
can use to derive the condition for n1 as well.Lower 
latency is achieved by the data nodes already 
when n > k 1 + 1.Reduced latency is achieved by 
all nodes performing degraded read operations 
relative to the case where x = 1. Direct read latency 
can be reduced by performing degraded read 
operations when the coding rate is n > k 1 + 1 and 
k x 1. 
When k = 1 and x = 0, we can similarly show that 
degraded read tasks will not result in a decrease in 
latency when k = n+k1.Degraded read activities 
can undoubtedly save latency, but we can't just 
switch over as many direct readings as feasible to 
them because doing so might incur significantly 
greater bandwidth costs. It is not possible to 
ensure that degraded read jobs will be successful 
in reducing latency when the code rate is n > k 1 + 
1 and 0 x k, or when the code rate is k k n+k1 
k1+ and x 1. These results are consistent with the 
results of Theorem 3.1. Given these unknowables, 
kkn+k1, the efficiency of degraded read jobs in 
lowering latency is not guaranteed. For this reason, 
a realistic method is required that may swiftly 
decrease latency by performing degraded read 
jobs. 
Throughput is increased, latency is decreased, and 
server overload is prevented when load balancing 
is used. The primary concept is to offload work 
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from overworked servers onto less busy ones. 
Researchers have spent a lot of time looking at 
ways to implement replication-based load 
balancing in large-scale distributed storage 
systems like the Google File System (GFS) the 
Hadoop Distributed File System (HDFS) and 
others. In addition, load balancing is crucial for k-
access readings since it aids in maximising the 
utilisation of all the nodes in a codeword. In order 
to accomplish load balance for direct readings, 
some of them must be transferred to degraded 
read jobs. Based on what has been discussed so 
far in this study, it appears that degraded read 
workloads will not help with latency reduction for 
direct readings but will instead raise the bandwidth 
cost. As a result, utilising load balancing to lessen 
wait times for direct readings necessitates a cost-
effective and efficient technique.In practical 
distributed storage systems within a codeword, the 
probability of exactly one hot data node is much 
higher than that of more than one. In fact, if there 
is more than one hot data node in a codeword, the 
workload within that codeword is inevitably 
intensely heavy, resulting in extremely high latency 
which is probably unacceptable to users. In such 
cases, we usually quickly adjust the storage 
system to ensure that there is at most one hot data 
node in a codeword. Accordingly, in this work, we 
focus on the most likely case that there is at most 
one hot data node in a codeword. 
In a codeword without hot data node, each data 
node has a small direct read arrival" rate. 
"It's possible that degraded read operations can 
help cut down on latency by taking use of the spare 
resources in a codeword by shifting some of the 
load to parity nodes. To simplify matters, let's 
assume that the value of xi, where i = 1, 2,..., k, is 
the same, say x, for all data nodes that are 
relatively near to 1.When one data node in a 
codeword becomes hot, we aim to lower its general 
read arrival rate by reducing its probability to join 
the degraded reads of other data nodes and 
decreasing its x to transfer more of its direct reads 
to other nodes via degraded reads. Without loss of 
generality, suppose the hot data node is the first 
node in the codeword. Let λ1 and x1 denote its 
direct read arrival rate and fraction of direct read 
tasks, respectively. Suppose the average direct 
read arrival rate of the 
other k − 1 data nodes is λo. With Eq. (3.1), we can 
easily get the general read 
arrival rate of the hot data node as 
λJ1 = x1λ1 + (1 − x) (k − 1) p1λo, (3.7) where p1 is 
the probability of the hot data node joining the 
degraded reads of other data nodes and p1 = k in 
(n, k) MDS coded storage systems. 
We can also get the average general read arrival 
rate of the other k − 1 data nodes 
o 
λoJ =xλo + (1 − x) (k − 2) poλo + (1 − x1) pλ1 
— (1 − x) k − 1 p λ, 
(3.8) 
n − 1 

where p is the probability of the other n − 1 nodes 
joining the degraded reads of the 
hot data node and p = k. 
n−1We can obtain Eq. (3.8) as follows: on the right-
hand side of Eq. (3.8), the sum of the first three 
terms represents the average general read arrival 
rate of the other 
k − 1 data nodes when the hot data node does not 
join any degraded read of the 
a non-hot data node from the set of k data nodes. 
So, po = k makes sense. If the hot data node" "is 
added to the other's degraded reads, however, 
then"−2. 
"With a probability of p1, if k+1 data nodes are 
eliminated, the remaining n-1 nodes will have their 
burden reduced by (1 x) (k 1) p1o. That will, on 
average, lower the general read arrival rate at each 
of the remaining n 1 nodes by 1 (1 x) (k 1) p1o.The 
average general read arrival rate of the n k parity 
nodes may also be calculated in a similar fashion. 
λpJ = (1 − x) (k − 1) poo + (1 x1) po1 — (1 x) k p p 
.For n 1, po and p are the same as in (3.8), thus n 
1. Since the parity node may connect the degraded 
reads of all the data nodes, the first term in Eq. 
(3.9) includes all the other k 1 data nodes other 
than the hot data node. This is analogous to the 
second term in Eq. (3.8), except that the parity 
node is able to do this. Eq. (3.9)'s final two terms 
are identical to those of Eq. (3.8). Lemma 3.1: 
Assume that the direct read arrival rate of a single 
data node in a codeword is 1 when it becomes hot. 
If x1 xoJ, then x1J = xoJ may be achieved by load 
balancing by setting the probability of the hot data 
node joining the degraded reads of the other data 
nodes to p = (n1)d, where d = x( ) + (1 x)(k 2)p + (1 
x)(k1)no (1 x)p1.Cording to Lemma 3.1, it is 
assumed that the proportion x of direct read jobs 
performed by the hot data node is the same as that 
performed by the other data nodes. By only 
modifying p1 to decrease the likelihood of the hot 
data node merging with the degraded reads of 
other data nodes, we may accomplish load 
balancing. If x1 oJ, then the proportion of direct 
read jobs for the hot data node can remain 
constant at x; otherwise, the fraction must be 
adjusted. 
If we assume that the direct read arrival rate of a 
hot data node in a codeword is 1, then Lemma 3.2 
holds. Setting the proportion of direct read jobs for 
the hot data node to x1 = e, where e = xo + (1 x) (k 
2) poo + p1, will accomplish load balancing with 1J 
= oJ if x1 > oJ. p1 = 0 will prevent the hot data node 
from joining the degraded reads of the other data 
nodes.By modifying x, we can achieve load 
balancing over all of the nodes, including the parity 
ones, as discussed in Lemma 3.1 and 3.2. Load 
balancing's ability to cut down on delay is 
weakened since x gets small and the workload, 
and hence the bandwidth cost, of each node 
increases dramatically. It might potentially make 
things more sluggish. Since this is the case, we 
restrict our efforts to Lemmas 3.1 and 3.2, where 
load balancing is solely concerned with data 
nodes. Lemma 3.1 and 3.2 are so simple that their 
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proofs are unnecessary here.In the next section, 
we suggest a method to cut down on wait times 
called Degraded Reads and Load Balancing 
(DRALB). As illustrated in Algorithm 3.1, the 
threshold value and the adjustment period T are 
both flexible and may be set to meet a variety of 
application-specific requirements. We employ 
Lemmas 3.1 and 3.2 to provide load balancing of 
data nodes, which, as can be seen from Algorithm 
3.1, helps us minimise latency. The latency of hot 
data will be drastically reduced since burden is 
shifted away from the node producing the data.\ 
 
8. Research Design 
 
For (n, k) MDS-coded storage systemreadinghe 
Redundant Request Technique, often known as 

RedS, has become an increasingly popular read 
technique in recent years. RedS may divide a 
codeword into n tasks and distribute them to each 
of the n nodes, regardless of the number of files 
that are requested by a read request inside the 
codeword. When k nodes out of n have completed 
delivering their services, the request is regarded to 
be done, and the remaining n k tasks are stopped 
as soon as possible. 
The solution that we have built is based on RedS, 
and it has the ability to handle requests for files of 
varied sizes while simultaneously minimising 
access latency. (FRedS) is the acronym that we 
use to refer to this Flexible Redundant Scheme. 
 
9. Conceptual Framework of the Study 

 
 

 
 
10. Data Analysis 
 
To answer your question in a general sense, "In 
order to save your data using HTSC(D) or FH 
HTSC, you will need to combine your files into a 
single large one of size M, say 1 to 3 GB, and then 
divide it into K parts (D, h)." It is possible to 
compute the fixed size M by making use of the 
storage space that is accessible at each node as 
well as the parameters of either HTSC (D, h) or FH 
FH HTSC. (D, h). Most of the time, users are only 
interested in a portion of the uncoded systematic 
component of a file, which is stored in one of the K 
nodes. Studies conducted in the past made the 
assumption that readers would want to have 
access to the whole contents of the use of a 
codeword to define the K-tree is a significant 
change, taking into consideration the fact that 
every single piece of information is now kept in the 
K-tree. On the other hand, this simplifies things too 
much and does not really represent reality. As an 
example, erasure coding is only accessible in WAS 
for files that exceed a certain size barrier, which 
might be as high as three gigabytes. The majority 
of individuals only use a tiny portion of the three 
gigabytes that are accessible, therefore it should 
not come as a surprise that it is a waste. This is in 
accordance with the functionality that was 
envisioned for the HTSC (D, h). Due to this reason, 
we will be focusing our attention on reading 
requests from customers who are only interested 
in a portion of the information that is stored in one 

of the K data nodes. "Inferences taken from this 
study, 
 
Discussion 
 
Our mathematical methodology in this research 
allows us to examine how request-specific file 
sizes affect the latency performance of replication 
and encoding. We provide a basic description of 
the latency-cost tradeoffs and propose two reading 
algorithms, FRedS and FRanS. When working with 
a varied dataset consisting of 88 samples, we 
additionally investigate the efficiency of coding and 
replication in relation to latency. Through 
comprehensive simulations using actual service 
"time traces from Amazon S3”, we show the impact 
of storage cost, system load, cancellation cost, and 
non-uniform data popularity on delay performance. 
We also provide qualitative observations to support 
this connection. 
Data and genetic material. Our comparison of 
coding and replication latency performance under 
the same storage cost reveals that, contrary to 
earlier findings, there are numerous factors to 
consider, the most important of which is whether 
the data popularity is uniform or not, making it 
difficult to draw any firm conclusions after 
considering real-world constraints. 
 
Conclusion 
 
To answer your question in a general sense, "In 
order to save your data using HTSC(D) or FH 
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HTSC, you will need to combine your files into a 
single large one of size M, say 1 to 3 GB, and then 
divide it into K parts (D, h)." The parameters of 
HTSC (D, h) or FH FH HTSC may be used to 
determine the fixed size M. This can be done by 
utilising the available storage space at each node 
during the calculation. That is, D and H. Most of the 
time, users are only interested in a portion of the 
uncoded systematic component of a file, which is 
stored in one of the K nodes. Studies that were 
conducted in the past assumed that readers would 
want to have access to the whole contents of a 
"Considering that every bit of information is now 
stored in the K-tree, the use of a codeword to 
describe it is a major shift." On the other hand, this 
simplifies things too much and does not really 
represent reality. As an example, erasure coding is 
only accessible in WAS for files that exceed a 
certain size barrier, which might be as high as three 
gigabytes. The majority of individuals only use a 
tiny portion of the three gigabytes that are 
accessible, therefore it should not come as a 
surprise that it is a waste. This is in accordance 
with the functionality that was envisioned for the 
HTSC (D, h). Due to this reason, we will be 
focusing our attention on reading requests from 
customers who are only interested in a portion of 
the information that is stored in one of the K data 
nodes. "Inferences drawn from this research"  
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