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Rhenium-188 Radiochemistry: Challenges and Prospects 

Philip J. Blower* 

King’s College London, Division of Imaging Sciences and Biomedical Engineering, St Thomas’ Hospital, 
London SE1 7EH, UK 

Abstract: After a lull in development of new chemistry for rhenium-188 and technetium-99m since 2000, there has been 
new investment in production facilities for Mo-99/Tc-99m coupled with increasing interest in rhenium-188 radionuclide 
therapy, particularly in developing countries. Much of the chemistry developed in the 1990s is not readily amenable to 
supporting modern radiopharmaceutical development, which places increased emphasis on molecular targeted 
radiopharmaceuticals. Consequently there is a need for new radiolabelling chemistry to incorporate these radionuclides 
into biomolecules using simple, kit-based methodology. This review provides an update on progress towards simple 
rhenium-188 labelling methods since 2000. 

Keywords: Rhenium-188, Technetium-99m, Bioconjugates, Kit, Radionuclide therapy. 

INTRODUCTION 

The rhenium-188 generator is an attractive source 
of a therapeutic radionuclide, for a variety of reasons, 
in certain settings and applications. It can provide daily 
availability, by a simple elution process entirely 
analogous to the elution of a technetium-99m 
generator. The capital cost (i.e. purchase of a 
generator) may be high but in a setting where many 
patients can be treated, it can be very economical 
compared to commercially available batch-produced 
therapeutic radionuclides such as lutetium-177. It is, in 
principle at least, versatile and can be incorporated into 
a range of types of vehicle suitable for molecular 
targeting. Its β-energy is high Emax 2.21 MeV, 
comparable to that of phosphorus-32 and yttrium-90), 
delivering a high radiation dose, and the half-life of 17 
hours is compatible with the pharmacokinetics of many 
small molecules and antibody fragments. Its low 
abundance gamma emissions (155 KeV, 15%) allow 
gamma camera imaging. These properties are less 
favourable in some circumstances; for example, the 
high energy β-emission is not likely to be effective in 
eradicating smaller tumours and micrometastases, and 
the 17 hour half-life is too short to be fully compatible 
with the pharmacokinetics of whole IgG antibodies 
whose blood half-life is typically several days. 
Nevertheless, the favourable logistics and economics 
associated with generator-based availability make it 
very attractive, particularly in locations where these 
features are particularly important, such as 
economically less developed countries. 
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The development of the chemistry of 188Re 
radiopharmacueticals has to an extent shadowed that 
of 99mTc, with which its coordination chemistry is highly 
analogous by virtue of its periodic position [1]. The 
analogy includes the chemical basis of the generator – 
both rely on β-decay of MO4

2- (M = 99Mo or 188W) to 
give MO4

- (M = 99mTc or 188Re), which is more readily 
eluted from the alumina solid phase by saline. The 
development of the chemistry of 99mTc radiopharma- 
cueticals since the 1960s, following the advent of the 
99Mo/99mTc generator and the gamma camera, can be 
traced in three phases.  

The first phase comprises radiopharmaceuticals 
coming into routine use in the 1970s, such as the 
complexes of dimercaptosuccinic acid (DMSA), 
bisphosphonates (e.g. methylene diphosphonate, 
MDP), diethylenetriamine pentaacetic acid (DTPA) and 
glucoheptonate. The development of these was based 
on almost no knowledge of the basic coordination 
chemistry of technetium, and in most cases the 
molecular structures and oxidation states of the 
technetium in these radiopharmaceuticals remain 
unknown even today. Indeed, they are likely to be 
complex mixtures of structures. This early phase was 
characterised by very little understanding of either 
technetium chemistry or the mechanisms by which the 
specific targeting of the tracers occurred in vivo. Hence 
their nuclear medicine utility is best described as 
“functional imaging.”  

In the second phase emerging in the 1980s, new 
99mTc radiopharmaceuticals with well-defined structure 
appeared, building on new basic research in 
technetium chemistry by pioneers such as Davison and 
Deutsch. This research led to identification of the more 
stable “technetium core” complex types in which ligand 
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design was well-matched to the coordination 
preferences of the metal in its different oxidation states. 
These include the Tc(V)oxo ([TcO]3+) and Tc(V)nitride 
([TcN]2+) cores with their characteristic tetragonal 
pyramidal geometry, the Tc(V) dioxo core ([TcO2]+), 
well defined Tc(III) complexes, and the Tc(I) cores 
based on π-accepting ligands (isonitrile and carbonyl). 
In this phase, molecular structure was well-defined (for 
example, 99mTc-HMPAO, 99mTc-MAG3, pentavalent 
99mTc-DMSA, 99mTc-sestamibi, 99mTc-tetrofosmin and 
99mTc-NOET are all based on stable cores and are well-
characterised structurally). In vivo mechanisms, 
however, remained obscure until later when, for 
example, mitochondrial uptake of the lipophilic cations 
99mTc-sestamibi [2] and 99mTc-tetrofosmin was identified 
and evidence of pentavalent 99mTc-DMSA entering cells 
via specific phosphate transporters [3] emerged.  

The third phase, emerging in the 1990s, coincided 
with the transition of nuclear medicine into the age of 
“molecular imaging” in which specific molecular 
pathways and receptors began to be targeted with 
specifically designed radiopharmaceuticals, often 
based on bioconjugates, in order to answer specific 
biomedical questions. Up the present time, this third 
phase is incompletely developed. Methods for 
conjugating 99mTc to biomolecules using various 
bifunctional chelators (HYNIC, MAG3 and other sulfur-
nitrogen combination chelators that bind the [TcO]3+ 
core effectively) and direct labelling approaches 
(binding of [99mTc(CO)3]+ to histidine tags and binding of 
reduced 99mTc to cysteine thiolate groups generated by 
reduction of antibody disulfide bonds) have been 
developed and available since the 1990s, but they 
have made little clinical impact. This may be in part 
because, unlike the phase 1 and 2 99mTc 
radiopharmaceuticals, which were amenable to one-
step kit formulation and reconstitution, none of the 
phase 3 labelling methods are technically easy and 
efficient to perform. In addition, it may be in part 
because the period since 1990 has coincided with the 
expansion of clinical PET, with research and 
development funds both in industry and academia 
being redirected towards molecular imaging with 
positron emitters. 

The historical development of 99mTc tracers has 
provided the template for development of 188Re 
radiopharmaceuticals too, albeit with a much lower 
degree of academic and commercial effort by 
comparison with 99mTc. The 188Re-bisphosphonate 
complexes, of unknown and heterogeneous structure, 
were the first to emerge in clinical application (palliative 

treatment of painful bone metastases in prostate 
cancer). The first structurally well-characterised 
example was the pentavalent 188Re-DMSA complex, 
with potential application in radionuclide therapy of 
medullary thyroid carcinoma and bone metastases in 
prostate cancer, which also emerged in the 1990s,  
[4-7] along with use of the 188Re-MAG3 complex as a 
soluble β-emitting agent to fill balloons in coronary 
angioplasty (aiming to prevent restenosis) to guarantee 
rapid renal excretion in the event of balloon rupture [8]. 
Use of sulfur-nitrogen based bifunctional chelators 
such as MAG3, initially developed for 99mTc, were used 
to link the [188ReO]3+ core to peptides and proteins and 
incorporate 188Re into particulates and emulsions for 
radioembolisation therapy. Direct labelling of proteins 
with histidine-tags using [188Re(CO)3]+, and antibodies 
by reduction of disulfide bonds, followed the 
corresponding 99mTc developments. However, as has 
been the case with 99mTc, most of these agents and 
methods were established in the 1990s and although 
clinical applications have begun to take hold (all of 
which are based on “phase 1” and “phase 2” chemistry 
described above, as illustrated in other contributions to 
this issue), little new 188Re chemistry development has 
occurred since that time. This unfortunate trend is 
reflected in the chart shown in Figure 1, which shows 
that publications describing new 188Re chemistry and 
clinical research have plummeted since their peak in 
2000. 

Since 2000, repeated world-wide shortages of 99Mo, 
and hence 99mTc, due to planned and unplanned down-
time of the major nuclear reactors supplying the 
nuclear medicine community, have created crises in 
the field. At the same time, β-emitting radionuclides 
such as yttrium-90 and lutetium-177, which have been 
developed into clinical application without need for 
development of new chelate chemistry, have become 
prominent and drawn attention away from 188Re, 
leading to a reduction in availability of 188Re 
generators. The nuclear medicine community has had 
to consider hard decisions regarding the future of 99mTc 
availability and gamma camera imaging, in the face of 
growing availability of PET with the potential to replace 
long-established gamma camera imaging procedures 
(such as bone scanning with 99mTc-bisphosphonate 
complexes) with PET imaging (such as bone scanning 
with [18F]fluoride). Far from signalling the demise of 
gamma camera imaging and 99mTc radiopharma- 
ceuticals, we have seen as a result major investment in 
new reactors, and development of new accelerator-
based routes to production of 99Mo and 99mTc. These 
developments give credence to the notion and 
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technetium radiopharmaceuticals are here to stay, for 
the foreseeable future. Alongside the recent growth in 
adoption of 188Re radionuclide therapies in some 
countries, [9, 10] 188Re generator availability is 
improving again and the scene is set for a resurgence 
of development of both 99mTc and 188Re chemistry 
development, reversing the recent trend (see Figure 1) 
that has seen the collapse of basic research on the 
chemistry of these radionuclides since 2000.  

 

Figure 1: Total publications on rhenium-188 by year (data 
from Web of Knowledge, ©2017 Thomson Reuters). 

The most comprehensive review of 188Re 
radiopharmaceutical chemistry dates back to 1999 [11] 
and the reader is referred to that review for a summary 
of the state-of-the-art pre-2000, as well as to reviews 
published within the last decade covering bifunctional 
chelator and bioconjugation development for labelling 
peptides and proteins with both 99mTc and 188Re  
[12-14]. The purpose of this article is to provide a brief 
update of developments since that time, identifying 

limitations of well-established coordination chemistry, 
with a focus on novel and well-characterised chemistry 
that has potential for application in the modern age of 
molecular imaging, rather than clinical applications of 
older, less well-characterised 188Re agents, particulate 
and non-molecular materials (such as nanoparticles, 
liposomes, emulsions, stents and patches) and 
antibodies labelled using older methods. 

DISCUSSION 

Rhenium (V) Complexes 

The Re(V) mono-oxo-core [ReO]3+ has been 
evaluated as a means of direct attachment to amino 
acid side chains of antibodies and peptides containing 
cysteine-thiol groups, often generated by reduction of 
disulfide bonds. This has become a mainstay of 
labelling whole antibodies after reduction of inter-chain 
disulfide bonds, offering versatile applicability and 
moderate stability of the labelled protein [11]. However, 
in the context of smaller proteins and antibodies where 
the structural impact of labelling is greater, use of 
native amino acid backbone and side chain donor 
groups (amide and thiolate) to bind the [ReO]3+ core 
(and its Tc analogue) directly has been problematic; 
either they are poorly characterised [15] or studies 
using mass spectrometry and molecular modelling 
have shown that it leads to heterogeneous mixtures of 
multiple isomers and monomeric and dimeric structures 
[16-19]. This direct labelling approach is therefore not 
recommended as a strategy for peptide labelling. 

 

Figure 2: Direct labelling with [188ReO]3+ via protein/peptide cysteine residues. Top: schematic showing whole IgG antibody 
labeling via reduction of interchain disulfide bonds followed by reaction with a pre-prepared [188ReO]3+ complex (e.g. with 
tartrate, citrate, bisphosphonate etc., ref. 11); bottom: possible structural motifs, identified by mass spectrometry, formed by 
reaction of [ReO]3+ precursor with a reduced cyclic peptide (salmon calcitonin, ref. 16). 
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Bifunctional chelators designed to accommodate 
the structural preferences of the [ReO]3+ offer a more 
reliable strategy. Use and further design [20] of 
tetradentate ligands containing a combination of 
amino/amido and thiolate donors [21] such as MAG3 
[22] (Figure 3a) and cysteine-containing amino acid 
sequences [23, 24] (Figure 2), developed in the 1990s, 
[11] have remained popular for attachment to lipids  
[25, 26] and peptides, [22, 27-32] or simple complexes 
designed for rapid renal excretion in the context of 
radionuclide therapy during balloon angioplasty, [33, 
34] has continued. 

Following the identification of the structure of the 
pentavalent technetium meso-dimercaptosuccinic acid 
complex [99mTcO(DMSA)2]-, [35, 36] the 186Re and 

188Re analogues were synthesised and shown to have 
identical structure and isomerism [6, 7] (Figure 3b) and 
biodistribution (targeting medullary thyroid carcinoma 
and bone metastases in prostate, lung and breast 
cancer) [4, 5]. The simple synthesis of the 188Re 
complexes and wide interest in these applications led 
to development of kit-based labelling, [37, 38] and 
preclinical evaluation in normal mice [39, 40] and in 
other tumours (e.g. cervical carcinoma models [41]). 
Further study showed that the individual isomers 
showed no significant differences in biodistribution, and 
underwent interconversion, in rats [42] and (in the case 
of [99mTcO(DMSA)2]-) in humans [43]. The analogous 
complexes of the racemic DMSA ligand (Figure 3c) 
were evaluated [44] in PC-12 tumours in nude mice 
and showed higher tumour uptake than the meso-

 

Figure 3: [ReO]3+ complexes with synthetic ligands. (a) MAG3 complex (R = H) and its esters (R = alkyl or peptide) (ref. 22); (b) 
isomers of the pentavalent meso-DMSA complex (ref. 7); (c) isomers of the racemic DMSA complex (ref. 44); (d) formation and 
use of the anhydride of the pentavalent meso-DMSA complex to label bioconjugates (R = peptide, antibody etc.; ref. 46); (e) 
tetradentate derivative of meso-DMSA (ref. 47); (f) pentadentate bhci ligand (ref. 49). 
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complexes. A range of ester derivatives of the 
complexes showed promising tumour uptake and 
reduced bone uptake in animal models [45]. 

The high stability in vivo in humans, [5] combined 
with the relatively simple synthesis, prompted 
evaluation of the DMSA ligand as a bifunctional 
chelator, by converting the [188ReO(DMSA)2]- core to its 
dianhydride (Figure 3d) to enable coupling to 
antibodies and peptides [46]. A limiting factor in this 
strategy is the potential for bridging to form “divalent” 
structures and mixed isomers, but the labelled 
conjugates thus prepared were well-characterised and 
very stable. The authors also reported promising use of 
acetyl hydrazine as an alternative to stannous chloride 
for reduction of perrhenate. Oxalate ions, alongside 
stannous ions, have also found a role in reduction of 
perrhenate to Re(V) in the context of the DMSA 
complex; [38] whether the oxalate functions as a 
reducing agent, intermediate chelator or both remains 
an open question. The work with acetyl hydrazine also 
led to the first preferential synthesis of the single (syn-
endo) isomer, offering a possible solution to the 
problem of isomerism [46]. To overcome the bridging 
problem, tetradentate derivatives constructed from two 
DMSA units linked by a linear triamine (Figure 3e) were 
synthesised and shown to form 188Re complexes 
readily (by direct reduction of perrhenate in the 
presence of the ligand). The complexes showed very 
high resistance to ligand exchange reactions in plasma, 
and can be linked to targeting molecules via the central 
amino group; however, the problem of multiple isomers 
persists [47, 48]. 

A ligand system specifically designed to 
accommodate the [ReO]3+ core, offering high 

symmetry, is the bhci system (Figure 3f) which is 
pentadentate, differing from most other ligand sets in 
filling the position trans to the oxo-ligand and thus 
removing an associative pathway for ligand substitution 
and oxidation to perrhenate. It was conjugated to an 
antibody via the non-coordinated amino group using an 
N-hydroxysuccinimide active ester, but despite the 
excellent thermodynamics and kinetics of its [ReO]3+ 
coordination capacity, it still had to pre-labelled with 
188Re before conjugation to the antibody [49]. 

The Re(V) dioxo core [ReO2]+ has also been 
suggested as the basis of bioconjugates; carbene 
complexes of the dioxo core proved insufficiently stable 
for radiopharmaceutical use, [50] but placing this core 
within a tetraamine ligand set, provided by two ethylene 
diamine ligands or one linear or cyclic tetramine  
(Figure 4a), has been shown to provide excellent 
stability against ligand exchange and oxidation in 
serum, with moderately convenient aqueous synthesis 
(entailing reduction with stannous chloride in the 
presence of the ligand), except in the case of cyclic 
ligands such as cyclam where kinetic barriers to 
complexation were high [51]. Electrochemical studies 
showed that although the ethylene diamine complex is 
vulnerable to reduction when protonated, the 1,4,7,10-
tetrazaundecane complex is not [52]. Neither 
optimisation to make radiolabelling more efficient and 
convenient, nor incorporation into bioconjugates, has 
been attempted, however. This approach was 
subsequently adopted for 99mTc and shown to be highly 
promising for labelling of bioconjugates using the 
1,4,7,10-tetrazaundecane rhenium dioxo-complex 
(Figure 4b), offering both mild and simple aqueous 
radiolabelling, high symmetry and excellent stability 
under biological conditions [53]. If satisfactory 

 

Figure 4: Complexes of the [ReO2]+ core. (a) left to right: ethylene diamine; 1,4,8,11-tetraazaundecane; and cyclam complexes 
(ref. 51); (b) [TcO2]+ core linked to peptide R via the 1,4,8,11-tetraazaundecane ligand (ref. 53); (c) [ReO2]+ diamido diphosphine 
complex (ref. 54); (d) [ReO2]+ dithioether diphosphine complex (ref. 55). 
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optimisation of the 188Re-labelling procedure can be 
achieved, including perhaps selection of a more 
suitable reducing agent than stannous chloride, this 
potentially offers a simple solution to the problem of 
forming a stable bioconjugates without problems of 
isomerism and multi-step synthesis, and could lead to a 
“matched pair” theranostic combination of analogous 
99mTc and 188Re radiopharmaceuticals. 

The [ReO2]+ core is made all the more attractive as 
a direction for further research by the observation that 
bis(amido)bis(phosphine) [54] and bis(thioether)-
bisphosphine) [55] ligands (Figure 4) can also stabilise 
the [ReO2]+ core, and the complexes are accessible 
directly from [188Re]-perrhenate using citrate as an 
intermediate chelator.  

An alternative to the oxo- and dioxo-ligand set 
providing a π-donating environment to stabilise the 
Re(V) core is the nitride ligand N3- [56]. Invariably the 
[188ReN]2+ core is generated in the first step of a multi-
step radiolabelling process, by reaction of 
[188Re]perrhenate with a hydrazide derivative in the 
presence of a reducing agent, usually stannous 
chloride. A number of hydrazide derivatives have been 
tested as a source of the nitride ligand, including N-
methyl-S-methyl dithiocarbazate (HDTCZ), [57] its 
pegylated derivative (HO2C-PEG(600)-DTCZ) [58] and 
succinic dihydrazide, with the former preferred as the 
most generally useful and efficient. The reaction 
produces an intermediate rhenium nitride complex 
which is subsequently treated with a suitable ligand 
combination to produce the final (usually square 
pyramidal) complex. Ligand sets employed include a 
symmetrical pair of dithiocarbamates [57, 59, 60] or 
dithiocarboxylates, [61] or unsymmetrical combinations 

of aminodiphosphine (PNP) with a bidentate thiolate 
[58, 62] or a monodentate tertiary phosphine with a 
tridentate dithiolate derived from two cysteine residues 
appended to a peptide (Figure 5) [63]. The 
bis(dithiocarbamate) is most simply used as the basis 
of a divalent targeting agent, such as the 
bis(bisphosphonate) derivatives developed as potential 
therapeutic radiopharmaceuticals for bone metastases 
[60]. Although the [ReN]2+ system is stable and 
potentially versatile, the multi-step nature of the 
labelling process means it is unlikely to find widespread 
utility in its present form.  

A bifunctional chelator that has been successful for 
99mTc labeling of biomolecules is hydrazinonicotinamide 
(HYNIC) (Figure 6). It offers probably the most efficient 
and highest specific activity methods for labelling 
peptides and proteins, but is limited by the need for a 
set of co-ligands to complete the 99mTc coordination 
sphere and the consequent problem of formation of 
mixtures of isomers, each with potentially different 
biodistribution [64]. Although usually depicted with 
monodentate diazenido ligands, all physical evidence, 
coupled with knowledge of the structure of model 
complexes, suggests that the HYNIC is a bidentate 
chelating ligand forming Tc(V) complexes (Figure 6) 
[64-66]. Despite much of this structural evidence 
arising from analogy to known stable rhenium 
complexes, [64] attempts to use HYNIC as a 
bifunctional chelator for 188Re [67] have met with failure 
and the conditions required to form labelled complexes 
with structure and stability analogous to the 99mTc-
labelled HYNIC-biomolecule conjugates are yet to be 
discovered. Extension of HYNIC with a thioamide 
tethering group provides a modification that gives a 

 

Figure 5: Complexes of the rhenium (V) nitride core. (a) Bis(dithiocarbamate) complexes; (b) bis(dithiocarboxylate) complexes; 
(c) diphosphine compexes (ref. 58); (d) dithiocarboxylate bisphosphonate conjugate (ref. 60). 
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stable, well-defined chelated derivative with the square 
pyramidal [ReO]3+ core [68] and can be radiolabelled 
with 188Re in this form (Figure 6) [69]. 

Rhenium (I) Complexes 

The Re(I) tricarbonyl fragment [188Re(CO)3]+ has 
proven itself as a versatile radiolabelling synthon for 
coupling to a range of chelators conjugated to targeting 
molecules, and for direct labelling of proteins  
(Figure 7). The precursor used for labelling is 
commonly assumed to exist in the form of 
[188Re(CO)3(H2O)3]+ (Figure 7a) but in the presence of 
typical buffers with metal-coordinating ability, it is likely 
that other species are prevalent (e.g. incorporating 
coordinated phosphate ions in phosphate buffer which 
is typically used [70]). Unlike the kit-based preparation 
of the [99mTc(CO)3]+ precursor, it is prepared from 
perrhenate using borane-ammonia as reducing agent 
under a CO atmosphere [71] and often requires 
purification before use in labelling the bioconjugate. A 
simple purification method has been developed [72] but 
the method remains somewhat cumbersome and the 
[188Re(CO)3]+ method is not likely to be widely adopted 
clinically unless a simpler, more “kit-like” method is 

developed. The reported mild methods for the 
alternative precursors [188Re(CO)5X] (X = Cl, Br, I) [73] 
or [Re2(CO)10] [74] are unlikely to meet that need. 

The preferred binding sites of [188Re(CO)3]+ in 
proteins are histidine residues and this has been 
particularly useful for labelling recombinant proteins 
that incorporate histidine tags (a sequence of typically 
six consecutive histidine residues) as a purification tool. 
Proteins without histidines, or with only isolated 
histidines, label poorly [75] whereas those with 
oligohistidine sequences can be labelled relatively 
efficiently [76]. Studies aimed at identifying optimal 
histidine-containing sequences for labelling with 
[Re(CO)3]+ have shown that as well as multiple 
histidines, incorporation of cysteine [77] or methionine 
[70, 78] residues into the sequence can enhance 
labeling efficiency and stability, and incorporation of 
positively charged amino acids (arginine, lysine) is 
particularly effective, with the potential to improve 
specific activity and avoid the need for post-labelling 
purification steps [78]. Although at least two histidine 
imidazole groups are assumed to bind to the rhenium, 
the full make-up of the coordination sphere when 
[Re(CO)3]+ is bound to histidine tags is unknown. The 

 

Figure 6: Complexes of HYNIC and related ligands. (a) structure of model rhenium complex (ref. 64); (b) suggested structure of 
Tc-HYNIC complex with tricine and nicotinic acid co-ligands, deduced from mass spectroscopy and analogy to model Re 
structure (a) (ref. 131); (c) [ReO]3+ complex with HYNIC-thioamide derivative (ref. 68). 

 

Figure 7: Rhenium(I) tricarbonyl and related complexes. (a) putative tris(aqua) [Re(CO)3]+ precursor; (b) dipyridylamine 
complex (R = linker to peptide etc.); (c) acid/ester-derivatised cyclopentadienyl complex (R = H or alkyl, ref. 93-96); (d) 
isoelectronic nitrosyl analogue with [Re(CO)2(NO)]2+ core (ref. 97); (e) isoelectronic diazenido complex (ref. 98). 
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amino acid preferences are the same for both 
[188Re(CO)3]+ and [99mTc(CO)3]+, [78] supporting the 
therapeutic and diagnostic “matched pair” aspiration. 
[188Re(CO)3]+ has also been used to label monoclonal 
antibodies after reduction of their inter-chain disulfide 
bonds. This experience adds weight to the suggestion 
that thiolate groups may play a part in binding the 
rhenium [79]. 

Several synthetic, usually tridentate, bifunctional 
chelators have been used to link the tricarbonyl 
fragment to biomolecules. Most common is dipyridyl 
(DPA, Figure 7b)51 [72, 80-82] but related structures 
including picolinic acid derivatives, [83, 84] tridentate 
pyrazolyl ligands, [85] aminodiacetate, [86] triazoles, 
[87-89] histidine derivatives [89-91] and pyrimidines 
[92] have been reported. Carboxylate and ester 
derivatives of the cyclopentadienyl ligand (Figure 7c), 
which forms an η5-complex with [Re(CO)3]+, have been 
shown to be highly stable and can be synthesised in 
water [93-96]. 

A potentially interesting variant on the [M(CO)3]+ (M 
= Tc or Re) core is the isoelectronic nitrosyl analogue 
[M(CO)2(NO)]2+ (Figure 7d), which can be produced by 
reaction of the tricarbonyl precursor with nitrosonium 
salts in acetonitrile or dichloromethane [97]. There are 
no reports so far of actual use of this approach for 
188Re-labelling but the [M(CO)2(NO)]2+core is expected 
to bind to the same types of ligands as [M(CO)3]+, with 
subtle differences due to the increased positive charge. 
However, with the reported synthetic route this synthon 

requires an additional step, over and above the already 
cumbersome preparation of the [188Re(CO)3]+ 
precursor. Similarly, in reaction of [ReBr3(CO)3]2- with 
diazonium salts, +NNAr displaces one carbonyl ligand 
to yield a diazenido-complex [ReX3(CO)2(NNAr)]- 
(Figure 7e). The diazenido ligand offers the possibility 
of a covalent link to targeting molecules. However, 
neither this possibility nor the application of this 
reaction to 188Re-labelling have been realised [98]. 

Synthesis of the 188Re analogue of well-known Tc(I) 
complex 99mTc-sestamibi ([Tc(CNR)6]+ where CNR = 2-
methoxyisobutylisonitrile) has been reported but no 
evidence that the complex produced has the reported 
structure was provided [99]. 

Rhenium (III) Complexes 

[Re(PS)2]+ (PS = 1,2-phosphinothiolate) has been 
identified as a stable Re(III) core, synthesised from 
Re(III) precursors, whose coordination sphere can be 
completed using a third bidentate ligand such as a 
dithiocarbamate (Figure 8a), pyridine-2-thiolate or 
xanthate [100, 101]. The analogous technetium 
complexes can be made direct from pertechnetate and 
show some analogy to the Tc(III) complex formed by 
reduction of pertechnetate with water-soluble 
phosphines in the presence of peptides containing a 
reduced disulfide bond (Figure 8) [16]. It is not yet clear 
whether the greater barrier to reduction of rhenium will 
allow [Re(PS)2]+ complexes to be accessible direct 
from perrhenate. Analogously, Re(III) can be 

 

Figure 8: Rhenium(III) complexes. (a) [Re(PS)2]+ core (PS = 1,2-phosphinothiolate, R = alkyl/aryl, R’ = alkyl)with 
dithiocarbamate co-ligand (ref. 100); (b) Re(III) bis(trithioperoxy) complex with dithiocarboxylate co-ligand (ref. 102); (c) trigonal 
bipyramidal Re(III) complex with aminothiolate ligand and isonitrile co-ligand (ref. 104); (d) reaction scheme showing formation 
of Re(III) 9S3 complex via reductive C-S bond cleavage of coordinated 9S3 (ref. 105). 
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coordinated by a ligand set of six sulfur atoms 
comprising two trithioperoxy and one dithiocarboxylate 
ligand (Figure 8b) [102]. The dithiocarboxylate ligand 
can be replaced by dithiocarbamates to give more 
stable complexes containing two trithioperoxy ligands 
and a dithiocarbamate, which could become the basis 
of a bioconjugate (Figure 8). These complexes are 
readily synthesised from Re(V) oxo precursors but 
synthesis direct from perrhenate has yet to be explored 
[103]. 

Trigonal bipyramidal Re(III) complexes with a 
tetradentate aminotrithiolate ligand and a π-acceptor 
ligand such as an isonitrile or phosphine (Figure 8c) 
are accessible efficiently in a two stage process from 
perrhenate via a Re-EDTA complex formed by 
stannous reduction of perrhenate in the presence of 
EDTA. By incorporation of a carboxylate side chain into 
the tetradentate ligand (Figure 8) synthesis of 
bioconjugates based on this core structure is feasible 
[104]. 

An intriguing and unusual set of complexes in a 
range of oxidation states is made possible by use of 
the 1,4,7-trithiacyclononane ligand (9S3). In acidic non-
aqueous solvent (e.g. acetic acid) 9S3 reacts with 
perrhenate to form [ReO3(9S3)]+, which can be 
reduced with stannous ions in the presence of more 
9S3 to [Re(9S3)2]2+, a rare example of a Re(II) 
complex; upon further reduction, instead of forming the 
Re(I) complex, the ligand undergoes C-S bond 
cleavage to liberate ethane, forming a stable Re(III) 
complex coordinated by a 9S3 ligand and a thioether-
dithiolate ligand (Figure 8d). This sequence of 
reactions can be performed, and the 188Re product 
isolated, within a few minutes with 188Re generator 
eluate, [105, 106] but has not been developed into a 
system for 188Re-bioconjugate synthesis. 

Rhenium (VII) Complexes 

The possibility of finding chelators that will stabilise 
the Tc(VII) trioxo core [TcO3]+, such as 1,4,7-
triazacyclononane [107] and 1,4,7-trithiacycononane 
[105] (Figure 8d) has been explored with some 
promise. Given that rhenium(VII) is expected to be 
more stable towards reduction than technetium(VII), it 
might be expected that a similar approach would be 
successful for 188Re and indeed the feasibility to 
chelate [ReO3]+ with a range of tridentate ligands has 
been reviewed, [108] but no radiopharmaceuticals 
based on such Re(VII) complexes have been reported. 

 

Figure 9: Re(VII) trioxo complexes. (a) 1,3,5-triazacy- 
clohexane complex; (b) 1,4,7-triazacyclononane complex 
(ref. 107)  

MISCELLANEOUS RHENIUM COMPLEXES WITH 
UNKNOWN OXIDATION STATE 

A number of ligands have been “labelled” with 188Re 
without structural characterisation or determination of 
stability. Although the procedures reported are 
sometimes convenient, these studies provide no 
understanding of the chemical nature or structure of the 
complexes formed and do not contribute to 
understanding of how to design chelators for 188Re. 
They include complexes with porphyrins, [109-111] 
macrocyclic polyaminophosphonates for targeting 
bone, [112] a DTPA complex [113] and a tripodal 
tris(hydroxamate) ligand linked to an antibody [114]. 

PERRHENATE AS A THERAPEUTIC RADIOPHAR- 
MACEUTICAL 

The [188Re]perrhenate ion itself is a potentially 
useful therapeutic radiopharmaceutical, being a 
substrate of the sodium/iodide symporter (NIS), which 
is expressed in thyroid follicular cells and which has 
been explored as a target in breast and thyroid cancer 
models and gene therapy of other tumours, using 
[131I]iodide and [188]perrhenate [115-124]. Since 
perrhenate, like iodide, is a substrate of NIS, but unlike 
iodide, not of the other cellular enzyme systems 
required to metabolise iodide for thyroid hormone 
synthesis, there may be advantages in its use for 
cancer therapy compared to [131I]iodide. In thyroid 
follicles it remains within the thyrocyte, whereas 
[131I]iodide is rapidly translocated to the colloid of the 
follicle; hence, [188Re]perrhenate irradiates NIS-
expressing cells from the inside rather than the outside, 
and this offers a microdosimetric advantage that could 
result in higher cytotoxicity [125]. It may also be 
advantageous in non-thyroid tumours expressing NIS, 
because its lack of metabolism means that its retention 
in normal thyroid tissue will be lower and hence its 
availability for uptake in non-thyroidal NIS-expressing 
cells will be greater than that of [131I]iodide.  
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CONCLUSION 

Despite the alarm caused by 99mTc shortages in the 
last decade, and the fall in reporting of new 99mTc and 
188Re chemistry since 2000, investment in new reactor- 
and accelerator-based facilities for 99mTc production, 
coupled with a resurgence of interest in use of the 
188Re generator in less developed countries, should 
ignite a reawakening of development of new chemistry 
to support use of both radionuclides in the new age of 
molecular imaging and targeted radionuclide therapy. 
Current clinical use of 188Re radionuclide therapy relies 
entirely on chemistry developed in the 1990s and 
earlier, and new chemistry to facilitate use of specific 
molecular targeted biomolecules is needed. In 
particular, chemistry to exploit the use of generator-
produced 188Re on the hospital site is needed, and this 
requires chemical methodology that is simple and kit-
based to minimise the requirement for costly 
infrastructure. This in turn needs chemistry to convert 
188Re from perrhenate to the required 
radiopharmaceutical, rapidly, under mild conditions 
compatible with biomolecules, preferably in a single 
step and without need for post-labelling purification, to 
produce a single stable homogeneous labelled product 
free of isomerism. The chemistry reported in this and 
previous reviews does not fully meet these challenges. 
Chemists must be imaginative and innovative to design 
new chelating systems and rhenium “cores” and 
discover reducing agents other than stannous salts to 
reduce perrhenate, in order to meet these challenges in 
the coming years. 
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