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Abstract: This paper presents two basic methods called as weighted least squares (WLS) and synthetic data 
transformations (SDT). The key idea of the paper is to estimate the parameters of the linear regression model with 
randomly right-censored data by using these two methods. Recently, the mentioned methods have received 
considerable attention in the literature. Studies on this subject show that both methods work well for linear regression 
model with censored data. A particular focus of our paper is to compare the performance of the WLS and SDT methods 
and to reveal the strong and weak aspects of them. In this context, we made a simulation study and a real data example. 
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1. INTRODUCTION 

Consider the linear regression model 

 Yi = Xij!i + " i , i = 1,…,n, j = 1,…, p         (1) 

where Xi ’s are the values of realized covariate which 
are fully observed, Yi ’s are the values of response 
variable, !  is a (p !1)  parameter vector to be 
estimated, and ! i ’s are independent and identically 
distributed with mean zero and constant variance. 

In matrix and vector form, the model (1) is given by 
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Then, the matrix and vector form of linear 
regression model (1) can be rewritten as 

Y = X! + "            (2) 

In practice, Yi ’s may be incompletely observed and 
the right censored by a censoring variable C. In this 
case, instead of observing (Yi ,Xi ) , we observe the 
data sets (Yi ,Xi ,!i ), i = 1,...,n{ }  with 

Ti = min Yi ,Ci( ), !i = I Yi " C i( ) = 1 if Yi " Ci( ) and 0 otherwise{ }
             (3) 

where I .( )  is an indicator function that contains the 
information of censoring, Ti ’s are the observed 
 
 

*Address correspondence to this author at the Mugla Sitki Kocman University, 
Turkey; Tel: 905364251668;  
E-mail: yilmazersin13@hotmail.com 

lifetimes and Ci ’s are the censoring time, respectively, 
for the i th subject. In the presence of censoring, model 
(1) rewritten with updated response variables as 

Ti = Xij! j + " i , i = 1,....,n, j = 1,..., p         (4) 

It cannot be applied the ordinary least squares 
method for estimating the model (2) because of the 
variable T  includes censored observations. To 
overcome this problem, there are two popular methods 
such as synthetic data transformations (SDT) and 
weighted least squares (WLS) with Kaplan-Meier 
weights. In this context, several important studies can 
be ordered as follows; Buckley and James [2] and Koul 
et al. [3] proposed the synthetic data transformation for 
modeling the censored data and they provide that 
original response variable Y and produced synthetic 
data have same expected values and asymptotic 
properties. Zheng [4] and Leurgans [5] gave extended 
properties of these synthetic data transformations and 
they compared mentioned two data transformation 
methods. Also, Zhou [6] and Lai et al. [7] studied about 
the asymptotic normality of synthetic data methods for 
regression with some applications. There are some 
other studies about the estimating the right-censored 
data with using synthetic data such as; Miller [8], Ritov 
[9], Tsiatis [10], Srinavasan [11], Fygenson [12], Li and 
Van Keilegom [13], Li and Wang [14], Wang and Dinse 
[15] respectively.  

There are some specific studies about estimating 
the right-censored data with Kaplan-Meier weights; 
Miller [1] proposed the Kaplan-Meier weights and he 
estimated linear regression model with weighted least 
squares method. Stute ([16-18]) extended this method 
for nonlinear models and illustrated its consistency and 
asymptotic properties. Also Yu et al., [19] used 
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weighted least squares method for estimating the 
censored data and they inspected the regression 
models for homoscedastic and heteroscedastic data. 
Khan and Shaw [20] studied about the weighted least 
squares method and in general, they deal with the 
treating the biggest censored value as an uncensored 
observation and they proposed some alternative 
adjusted imputation methods for estimation procedure.  

In this paper, we focused on comparison of the 
mentioned two methods. The purpose of this study is to 
detect the advantages and disadvantages of SDT, and 
WLS based on Kaplan Meier weights [21] and we 
planned to uncover the superiorities of the methods 
according to each other. To realize our goal, we carried 
out a real data and a simulation study. To the best of 
our knowledge, such a study has not yet been made. 

The paper is organized as follows. In Section 2, the 
data transformation method and Kaplan-Meier weights 
are expressed, respectively. The variances of the 
estimators are also illustrated in this section. In Section 
3, simulation study and real data application are 
presented. Finally, conclusions and recommendations 
about the application are presented in the last section. 

2. ESTIMATION OF LINEAR MODEL WITH RIGHT-
CENSORED DATA 

Let F, G and M be the distributions of the Yi ,Ci  and 
Ti  variables, respectively. According to these, survival 
functions of the mentioned variables could be written 
as 

1! F t / X( ) = P Yi > t / X( ), 1!G t / X( ) = P Ci > t / X( )  

and because of the independence of Yi  and Ci  

1!M (t / X) = (1! (F (t / X)"G (t / X)) = P (Ti > t / X).  

In estimation procedure of censored data, it can be 
said that there are also two important assumptions  

I. Xi ,Yi( )  and Ci  are independent 

II. P Yi !Ci / Xi ,Yi( ) = P Yi !Ci /Yi( )  

Because of censoring, the conventional methods to 
estimate the right-censored response variable are 
unusable. As we said before, this problem arises due to 
Ti  and true response variable Yi  have different 
expected values. In following two sections, we 
introduced two methods that overcome this censorship 
problem.  

2.1. Synthetic Data Transformation 

The SDT method is proposed by [3] to overcome 
the problems caused by censored data. In summary, 
the SDT provides the equality, E (Ti ) = E (Yi )  and by 
some modifications on censored and uncensored 
observations. Where E (.)  denotes the expected value 
(see, [16]). In our context, data transformation could be 
given by 

TiG = ! iTi
1"G Ti( )            (5) 

Where G (.) is the distribution of the censoring variable 
Ci , as expressed in the section 2. Thus, model (1) can 
be rewritten as 

TiG = Xij! j + " iG , 1 # i # n,1 # j # p         (6) 

Where the ! iG ’s are the error terms for a known G. 
Generally, distribution G is unknown and need to be 
estimated. To solve this problem, [3] used Kaplan-
Meier estimator defined by 

1! Ĝ t( ) = n ! i
n ! i +1

"
#$

%
&'i=1

n

(
I T i( ))t ,* i( )=0+, -.

, t / 0( )         (7) 

where T i( ) ’s are the ordered values of censored 

response variable such as 
 
T 1( ) ! T 2( ) !! ! T n( )  and 

! i( ) ’s are the ordered indicator values associating with 

T i( ) ’s. Furthermore, Ĝ t( )  has jumps only at the 
censored observations (see, [22]). 

In order to estimate the parameter of the model (6), 
ordinary least square (OLS) method is used with 
replacing censored response variable with synthetic 
response variable Ti G . Thus, the estimation of the 
regression coefficients !i j ’s could be obtained by 
solving the minimization criterion 

RSS ! j( ) = TiG " Xij !̂ j( )2i=1

n#          (8) 

where TiG ’s are unknown values of synthetic response 
variable. It should be noted they are estimated by 
TiĜ = ! iTi / 1" Ĝ Ti( )( ) . Hence, the equation (8) is 

updated as follows 

RSS ! j( ) = TiĜ " Xij !̂i j( )2i=1

n# = TiĜ " X!̂s( )$ TiĜ " X!̂s( )      (9) 

where !̂s  represents the estimated coefficient vector 
obtained by synthetic data.Some algebraic calculations 
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show that the estimated vector !s  that minimizes the 
criterion (9) is calculated as 

!̂s = "X X( )#1 "X TiĜ         (10) 

Note also that it can be said that !̂s  is a biased 
estimator of the, because of the synthetic data. 
However, it is heuristically said that when the sample 
size is getting infinity, bias term converges to zero. 
From the equation (9) the variance of the model is 
obtained as 

!̂ S
2 = RSS "̂S( ) / n # p( )         (11) 

where n ! p( )  is the degrees of freedom. Also, 
covariance matrix of the estimator is defined as follows 

Var !̂S( ) = "̂ S
2 #X X( )$1         (12) 

The diagonal elements of this matrix denote the 
variances of the estimators 

 
!̂i , i = 1,…, p( )  of the 

individual parameters, while the off-diagonal elements 
indicate the co-variances among these estimators. 

2.2. Weighted Least Squares with Kaplan-Meier 
Weights 

The WLS estimator of !̂W  is defined by 

!̂W = argmin Wi Ti " Xi!( )2
i=1

n

#$
%
&

'
(
) ,        (13) 

where Wi ’s are the Kaplan-Meier weights obtained by 
Kaplan-Meier estimator. Calculations of weights are 
based on the jumps of the K-M estimator. According to 
(3) Kaplan-Meier weights are obtained as follows 

 

Wi =
! i( )

n " i +1
n " j

n " j +1
#
$%

&
'(

! j( )

j=1

i"1

) ,

i = 2,…,n and W1 =
!1
n

       (14) 

where T i( )  is the ith  minimum value of T and ! i( ) ’s are 

the ordered values associated with T i( ) ’s. It can be 
seen from (14), this weight function gives zero weight 
to censored observations and the largest observation 
T n( ) . Thus, from equation (14) weighted least squares 

estimate of the !̂W  is obtained as 

!̂W = "X WX( )#1 "X WT         (15) 

Where X  is the n x p  matrix, W  is the n x n  
dimensional weight matrix, and T  is the right-censored 
response vector.  

As in the equation (12), the variance of the 
estimator !̂W  is calculated by using the sum of squares 
of residuals  

RSS !( ) = Ti " X!̂W( )#W Ti " X!̂W( )  

Hence, the estimator of variance of the model (2) is 

!̂W
2 = Ti " X#̂W( )$W Ti " X#̂W( ) / n " p( )       (16) 

and the variance-covariance matrix of the !̂W  can 
be obtained as follows is 

Var !̂W( ) = "̂W
2 #X WX( )$1         (17) 

To gain some understanding of how well the 
mentioned methods work, we obtained means and 
standard errors for the estimates obtained by the WLS 
and the SDT methods under the three different 
censoring levels. Moreover, in order to assess the 
quality of the regression parameters, we used Mean 
Squared Errors (MSEs) and coefficient of determination 
which can be calculated as, respectively; 

MSE = 1
n

Ti ! T̂l( )2i=1

n"         (18) 

In this study, because we are dealing with the linear 
regression models, we can use the coefficient of 
determination R2  for measuring the quality of 
estimations. R2 can be defined by 

R2 =
T̂l !Tl( )2i=1

n"
Ti !Tl( )2i=1

n"
        (19) 

where Ti ’s are the fitted values T , is the mean values 
of response variable T . 

3. NUMERICAL EXAMPLES 

3.1. Simulation Study 

For convenience, we carried out a simulation study 
to compare the performance of the two methods stated 
in the previous section. There are 1000 simulation runs 
for three different sample sizes (n=50,100, 250) and 
censoring levels (C.L.=10%, 25%, 40%). The outcome 
T is generated according to a censored linear 
regression model 

 Ti = ! + "1X1 + "2X2 + "3X3 + # i , i = 1,…,n       (20) 

where  Xi ! N 0,1( ) , !i = " ,!1,!2,!3( )T = 1,3, # 2, 0.5( )T  
and ! i ’s are the random error terms from N 0,1( ) . 
Here, Ti  is the randomly-right censored response 
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variable which is obtained as (3). We generate the 
censoring variable Ci  from Bernoulli distribution for 
three different probabilities. The following figures and 
tables summarize the results that obtained from model 
(20). 

When we inspected the Figure 1, as the sample 
sizes increase, the range of the estimates becomes 
narrower as expected. However, it can be clearly seen 
that the estimates from the WLS method are better 

than those of the SDT method under the lower 
censoring levels.  

The outcomes in the Figure 2 show that the ranges 
of the estimates are wider because of the high 
censoring level. When we evaluate the Table 1 and the 
Figure 2 together, the key point is that the SDT method 
corrupted more than WLS. Therefore, it can be said 
that the WLS is affected from censorship level change 
less than the SDT method for this simulation study.  

 

Figure 1: In x-axis of each boxplot “WLS1”, “WLS2” and “WLS3” represent the estimated regression coefficients obtained by 
KM weights for sample sizes 50, 100 and 250, respectively, and C.L.=10%.“SDT1”, “SDT2” and “SDT3” are similar to WLS1”, 
“WLS2” and “WLS3, respectively, but for SDT method. 

 

 

Figure 2: Similar to Figure 1 but for C.L.=40%. 
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Table 1 shows the mean values of regression 
coefficients and standard deviations (in parentheses) 
obtained from 1000 simulated data sets. The results in 
the Table 1 indicate that the magnitudes of variances 
are decreasing as sample sizes are getting larger. As 
expected, the quality of estimates deteriorates under 
high censoring levels, in details, when we look at the 
results of two estimation methods; we observed that 
WLS method gave more satisfying results than SDT 
according to variances. In Table 1, minimum variances 
values are denoted by bold color and here, almost all of 
the minimum variances are obtained by WLS method.  

The overall point is that the performances of the two 
methods are quite different, especially in higher 
censoring levels. The outcomes from the data under 
the C.L=40% prove that WLS has improved the 
performances over SDT. In order to be sure about the 
superiority of the WLS method we present the plot of 
the variances of the regression models for different 
sample sizes and censoring levels in Figure 3. In this 
figure, left panel represents the variances for C.L. = 
10% and similarly right panel is designed for the C.L. = 
40%. 

When we examine the Figure 3, we can clearly said 
that the linear regression models estimated by WLS 
method have smaller variances than variances of 
models that obtained by SDT for all sample sizes and 
all censoring levels. Furthermore, when censoring level 
changes from low to high, we cannot see an excessive 
increment on variances of WLS, we measure the 
changing as about 0.03, but in SDT method, variances 
change from 1.1 to 3 (difference is 2.9) which means 
that censoring level effects the estimations of SDT 
method badly. 

To see more specifically the difference between 
qualities of the two methods Table 2 is given below that 
includes the MSE values and scores of R2 . It is well 
known that lower MSE and bigger values indicate 
better model fit to the data. For these purposes, the 
MSE and values from the methods are calculated and 
they are summarized in Table 2. These outcomes show 
that when the censoring levels are 25% and 40%, the 
WLS fits outperform the SDT fits for all sample sizes. 
This indicates that the WLS method is preferred when 
the data censoring rate is moderate and high. 

Table 1: Estimates and Standard Deviations of the Regression Coefficients 

  WLS SDT 

    !̂  !̂1  !̂2  !̂3  !̂  !̂1  !̂2  !̂3  

50 0,9920 3,0045 -2,0018 0,5119 0,9863 3,0242 -2,0077 0,5076 

 (0,1425) (0,1225) (0,1388) (0,1665) (0,1541) (0,1325) (0,1501) (0,1801) 

100 0,9986 2,9985 -1,9980 0,5021 1,0035 3,0082 -2,0064 0,5038 

 (0,0992) (0,1014) (0,0904) (0,0953) (0,1027) (0,1050) (0,0936) (0,0986) 

250 1,0029 2,9994 -2,0001 0,5015 1,0021 3,0033 -2,0043 0,4977 

10% 

  (0,0632) (0,0659) (0,0656) (0,0612) (0,0641) (0,0668) (0,0666) (0,0621) 

50 0,9949 3,0023 -1,992 0,4914 1,0031 3,0283 -2,0232 0,4856 

 (0,1397) (0,1424) (0,1659) (0,1515) (0,1170) (0,1804) (0,2102) (0,1919) 

100 1,0002 3,0024 -1,9984 0,4976 1,0117 3,0266 -2,0092 0,5071 

 (0,1007) (0,1091) (0,1093) (0,1093) (0,1152) (0,1247) (0,1249) (0,1250) 

250 1,0018 3,0052 -1,9964 0,4957 1,0130 3,0117 -2,0090 0,4953 

25% 

  (0,0364) (0,0631) (0,0641) (0,0654) (0,067) (0,0668) (0,0677) (0,0692) 

50 0,9943 3,0053 -2,0114 0,4957 0,9755 3,0169 -2,0134 0,5063 

 (0,1459) (0,1667) (0,1373) (0,1551) (0,2303) (0,2631) (0,2167) (0,2449) 

100 0,9913 3,0025 -1,9980 0,4911 0,9792 2,9831 -1,9890 0,4621 

 (0,1036) (0,1036) (0,1033) (0,1035) (0,1367) (0,1367) (0,1363) (0,1366) 

250 0,9985 2,9977 -1,9998 0,5017 0,9993 3,0068 -1,9912 0,5002 

40% 

  (0,0636) (0,0642) (0,0661) (0,0639) (0,0732) (0,0740) (0,0762) (0,0737) 
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However, it should be noted that if the data is 
uncensored, any of these methods may be preferred. 

3.2. Real Data Example 

In this section, we presented the results of real data 
application. We made the experiment with data 
collected from colon cancer patients in Izmir, Turkey. In 
this example, we used the logarithm of the survival 
times of patients as a response variable (Stime). Eight 
independent variables are denoted as: sex, age, 
application (app), location of the tumor (loc), score of 
organ and tissue transplant (tx), liver metastasis (met), 
type of operation (op) and phase of cancer (phase). For 
these variables, we will fit a linear regression model 
given by 

log Stimei( ) = !0 + !1sexi + !2agei + !3appi +
!4loci + !5txi + !6meti + !7opi + !8phasei + " i

     (21) 

where  i = 1,…, 40 . A total of 40 patients are observed in 
the analysis. Of the 40 patients in the sample, 11 are 
censored from the right randomly for different reasons 
such as withdrawing from study or death from different 
illness. So, the censorship rate is calculated as 
27.50%. 

Regression results obtained by two methods are 
illustrated in table and figure. Table 3 shows the 
estimates and variances of regression coefficients, and 
the values of the MSE and the coefficient of 
determination R2  for the mentioned two method. 

 

Figure 3: Distributions of the variances obtained from WLS and SDT methods for different sample size. 

 
Table 2: MSE and Values for Comparing the WLS Fits of Model (20) Against the Associated SDT Fits 

n=50 

  MSE R2  

C.L. 10% 25% 40% 10% 25% 40% 

WLS 0,0009 0,0008 0,0009 0,931 0,9283 0,9244 

SDT 0,0014 0,0021 0,0026 0,9167 0,8763 0,7987 

n=100 

  MSE R2  

C.L. 10% 25% 40% 10% 25% 40% 

WLS 0,0012 0,0007 0,0009 0,9297 0,9287 0,9272 

SDT 0,0012 0,001 0,0025 0,9231 0,903 0,8536 

n=250 

  MSE R2  

C.L. 10% 25% 40% 10% 25% 40% 

WLS 0,0009 0,0008 0,0011 0,9298 0,9296 0,9284 

SDT 0,0009 0,0009 0,0017 0,9273 0,9192 0,8968 
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As expressed earlier, the outcomes from the WLS 
and SDT are compared in Table 3. It should be noted 
that the variances of the estimated regression 
coefficients are given in parentheses. From Table 3, we 
observe that the variability measures of the estimates, 
the values of MSE and R2 obtained by the WLS are 
smaller than those of the SDT. So, the WLS method 
giving the smallest values is preferred. 

Note that some values of the response variables are 
censored. In this context, Figure 4 shows the real 
survival time data with together fitted values from two 
methods, SDT and WLS, respectively. As can be seen 
in Figure 4, fitted values from the WLS (indicated by ◘) 
are more stable and consistent than fitted values 
obtained from SDT (marked by˟). One of the most 
important reasons for this is that a synthetic response 
variable whose expectation is equal to the original one 
and then gets the least squares estimator by using this 
unbiased synthetic response variable. As expected, the 
weighted least squares (WLS) method gives a better 
performance than the least squares using synthetic 
response variable (SDT) in this study. Furthermore, 

note also that when the sample size is getting larger, 
mentioned methods are beginning to give almost same 
results for estimating models. 

4. RECOMMENDATIONS AND CONCLUSIONS 

In this study, we focus attention on estimation and 
comparison of the WLS and SDT methods. To realize 
these purposes we carried out a simulation study and a 
real data application. Then it is obtained some results 
about these two methods. Accordingly, we interpreted 
the results and listed our comments.  

• For low censoring levels, the difference of 
estimation quality between two methods is 
almost negligible especially for large samples 
which can be seen in Figure 1 and Table 1.  

• In high censoring levels and small sample sizes 
WLS method can resist the censorship but 
performance of SDT begin to decrease.  

• Thus, we are recommending the WLS method 
for small sample sizes, and high censoring levels 
but according to this study, SDT can be used for 
the large sample sizes or the low censoring 
levels because it gives good results under 
certain conditions. 

• The WLS method is found to be better than SDT 
when these methods are applied to the data set 
containing 8 features of colon cancer patients. 

• The results obtained by the real data sample and 
simulation study are consistent with each other. 
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