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Abstract: GA-Ensemble is found to be more resistant to outliers and results in simpler predictive models than other 
ensemble models. The fitness function consists of three parameters (a, b, and p) that limit the number of base classifiers 
(by b) and control the effects of outliers (by a) to maximize an appropriately chosen p-th percentile of margins. We 
present the effect of the parameters of a new fitness function as well as the increased complexity of base classifiers to 
improve predictive accuracy. We use some artificial and real data sets to demonstrate the effect of GA-Ensemble 
performance at 16 different treatment levels with three different base classifier options and compare to AdaBoost.  
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1. INTRODUCTION 

The recent methods with respect to classification 
problems are able to handle large data sets easily 
without many assumptions. A single decision tree is 
useful in identifying complex interactions among 
predictors compared to classical methods. However, it 
is unstable and its performance is not very good 
compared to more recent methods. Ensemble methods 
like boosting [1] and random forests [2] can improve 
predictive model performance but have complex 
interpretations and computation problems. The 
performance of these techniques strongly depends on 
the data characteristics. As a result, there is no best 
method for all problems. 

Boosting is a widely used and powerful prediction 
technique that sequentially constructs an ensemble of 
base classifiers for a binary classification problem. In 
some experiments (e.g., [3-5]), empirical results 
suggest that boosting often does not overfit even with 
thousands of rounds. Nevertheless, the actual 
performance of boosting is dependent on the data set 
and the base classifier. So there is still an overfitting 
problem because boosting is sensitive to unusual 
examples in the data in trying to attain a perfect fit to 
the training data [6-9]. 

One of the main issues in boosting is to study the 
properties of the margin distribution in order to get 
better generalization performance. Schapire et al. [10] 
discussed methods for improving performance related  
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to the distribution of margins of the training data. Their 
experiments show that there is a good correlation 
between a reduction of the portion of training examples 
having a small margin and generalization performance. 
They also show that increasing the margins is very 
effective theoretically and experimentally. Breiman [11] 
presented that arc-gv produces a higher margins 
distribution than AdaBoost [12], but the performance is 
worse. Reyzin and Schapire [13] argued that worse 
performance of Breiman’s experiments can be 
explained by the increased complexity of the base 
classifiers.  

Oh and Gray [14] proposed GA-Ensemble to solve 
the over fitting problem by maximizing the p-th 
percentile of the margin or ignoring the p-th percentile 
of the smallest margin. GA-Ensemble simplifies the 
interpretation of the final model by penalizing the model 
complexity term as measured by the number of base 
classifiers in the fitness function. However, further 
study is needed about choosing p for maximizing p-th 
percentile and combination of the parameters (a and b) 
in the fitness function to determine good settings. Oh 
and Gray [15] used a plot of margins as opposed to p 
maximized, but the tuning parameters (a and b) in the 
fitness function do not represent optimal combinations. 
This paper focuses on the effect of the increased 
complexity of base classifiers and determining how to 
find the best values of the tuning parameters for 
different data sets to control the number of base 
classifiers and maintain outlier resistance.  

After reviewing GA-Ensemble algorithm in Section 
2, we present designed experiments with 16 treatment 
levels to find the best parameters and introduce three 
different base classifiers in Section 3. We discuss the 
effect of the parameters of a new fitness function as 
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well as the increased complexity of base classifiers 
based on simulation and real data sets in Section 4. 
Section 5 contains a summary and discussion. 

2. ALGORITHM AND NEW FITNESS FUNCTION 

The GA-Ensemble algorithm is a method for 
optimizing base classifiers and their weights, which are 
randomly generated, using a genetic algorithm.  
Figure 1 presents a GA-Ensemble algorithm. In this 
genetic algorithm, a solution is a set of base classifiers 
and their weights. On each generation, solutions are 
evaluated by the fitness function in (2.1), and a new 
generation of solutions evolves through genetic 
operations (mutation, crossover, grow, and prune) and 
elitist selection. The fitness function can measure the 
goodness of each solution and after K generations the 
final solution, which is a combination of base classifiers 
with their weights optimized, is chosen in the final 
generation with the largest fitness value. Therefore GA-
Ensemble simultaneously optimizes the weights, split 
variables, split values, and predictions by a genetic 
algorithm. During processing, the number of base 
classifiers is limited by utilizing the tuning parameter b, 
Cs, maxC, and crossover operation.  

The fitness function (2.1) of a genetic algorithm is 
consist of the p-th percentile of the margin distribution 
with two penalty terms for the misclassification rate and 
the model complexity measured by the number of base 
classifiers. From the first term, Mp, we can identify or 

ignore outliers using the margins of training data. The 
margin has a range of [-1, +1] which is positive if and 
only if the final model correctly classifies the training 
set. The magnitude of the margin is interpreted as a 
measure of confidence in the prediction. Therefore 
outliers usually have a large negative margin. The 
fitness function ignores the p% of the smallest margins 
but considers maximizing the p-th percentile of margin, 
so that we have a more outlier resistant solution. 

Through the penalty term for the number of negative 
margins, not only the performance of the algorithm 
would be improved, but also we can maintain outlier 
resistance when p% is less than the proportion of 
outliers in the training data. To construct a simpler 
model combined with distinct base classifiers, the 
fitness function is penalized with respect to complexity 
as measured by the number of base classifiers in order 
to reduce the computation and interpretation problems.  

The tuning parameters a and b are the tuning 
parameters for the penalties on the number of negative 
margins and the number of base classifiers in the new 
fitness function of the genetic algorithm. They can be 
chosen to avoid one or two of the three terms in the 
fitness function dominating the others so that it makes 
sense to normalize the terms to make interpretations 
and the choice of a and b easier. The range of the first 
term is from -1 to +1 and the second term is the 
training error laid between 0 and 1. The third term is 
divided by maxC, the size of the largest solution the 

 

Figure 1: GA-Ensemble algorithm. (2.1) is the fitness function where Mp  is the p-th percentile of the margin distribution, I(•) is 

an indicator function, mi  is the i-th margin, n is the number of observations, Cs is the number of base classifiers in the solution s, 
maxC is the maximum number of base classifiers, and a and b are tuning constants. 
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user wishes to have (Note: It is still possible for a 
solution to be larger than maxC; it is simply a reference 
point for normalizing Cs). Therefore third terms tend to 
lie between 0 and 1 although it is possible for the third 
term to exceed 1. 

With regard to interpretation, the choice of a (or b) 
represents a trade-off. In the case of a, an increase of g 
units in Mp is regarded as equivalent to an increase of 
g/a units in the training error, with regard to the fitness 
function. Likewise, in the case of b, an increase of g 
units in Mp is regarded as equivalent to an increase of 
g/b units in the normalized size of the solution. 

3. DESIGNED EXPERIMENTS AND BASE 
CLASSIFIERS 

To find the best combination of tuning parameters 
based on the different data sets, we need to set up the 
designed experiment on three factors: p, a, and b. 
Because the best combination of a, b, and p depends 
on the data structure, and it is impossible to test all 
values of p, a, and b, we designed a simulation 
experiment to study the effects of those parameters. 
First we set the maximizing percentile of the margins, 
p, to 0.0 (0%), 0.05, 0.10, and 0.15. The value of p = 
0.0 corresponds to maximizing the minimum margin. 
We set the values of a to 1.0 or 5.0 and b to 0.1 or 0.5 
so that there are four different combinations (a, b): (1.0, 
0.1), (1.0, 0.5), (5.0, 0.1) and (5.0, 0.5) with 4 different 
values of p, which are 0.00, 0.05, 0.10, and 0.15. 
Therefore this designed experiment on three factors 
leads to 16 treatments for GA-Ensemble. Table 1 
displays the 16 treatments of the tuning parameters, a, 
and b with the value of p indicating which percentile to 
maximize. We have a consistent convergence value of 
fitness with 2000 generations for all data sets. For each 
simulation data set, we have 10 replicated runs per 
treatment. In this paper we show the designed 

simulation experiments on the effects of parameters, to 
see that there are some general recommendations that 
might be made about their choice.  

To extend the base classifiers beyond stump trees 
(one split with two terminal nodes), we considered 
decision trees with three split points and oblique stump 
trees for GA-Ensemble. Decision trees with three split 
points are randomly produced and evolve into one of 
three different types of trees, which have either two 
terminal nodes with one split point (stump), or three 
terminal nodes with two split points, or four terminal 
nodes with three split points. A stump tree can split 
data sets vertically or horizontally, but a stump tree with 
linear combination splits (also known as "oblique 
splits") can split obliquely as well as vertically or 
horizontally in the predictor space. So a two-terminal 
node, oblique stump tree is similar to a stump tree, but 
it is a more complicated and general model than a 
stump. The base classifiers with their weights are 
randomly chosen for the initial population of solutions 
and optimized by genetic operations. 

4. EXAMPLES  

In this section, two artificial data sets and three real 
data sets are used to demonstrate the effect of 
increased complexity of base classifiers, and how to 
find the best values of the tuning parameters to control 
the number of base classifiers and maintain outlier 
resistance. We also compare GA-Ensemble with 16 
treatments to AdaBoost with 8 different values of the 
number of iterations (T). As default values, we set Cs = 
5, the initial number of base classifiers in the 20 initial 
solutions (N = 20), and maxC = 20, the maximum 
number of base classifiers in a solution. The number of 
simulations in the genetic algorithm is K = 2,000.  

Table 1: Treatment Levels of Designed Experiments 

Treatment 1 2 3 4 5 6 7 8 

p 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 

a 1.0 1.0 5.0 5.0 1.0 1.0 5.0 5.0 

b 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 

Treatment 9 10 11 12 13 14 15 16 

p 0.10 0.10 0.10 0.10 0.15 0.15 0.15 0.15 

a 1.0 1.0 5.0 5.0 1.0 1.0 5.0 5.0 

b 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 
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4.1. The First Simulation 

For the first simulation, a d = 2-dimension problem 
with sample size n=100 is considered. Two predictor 
values are randomly generated from a uniform [0, 1] 
distribution. We have a response variable, Y !{-1, +1} 
given by 

Y = +1 otherwise.

!1 for x1 "0.05 and x2 # 0.05$
%
&

'&

(
)
&

*&
     (3.1) 

To look at the effect of noise, we add 10% random 
noise to the data set and display the effect on GA-
Ensemble with various p-th percentiles to be 
maximized and the tuning constants, a and b, in the 
fitness function of the genetic algorithm. Stump trees 
with two terminal nodes were used as base classifiers 
for GA-Ensemble and AdaBoost. Intuitively we expect 
that few stumps are needed to correctly classify for a 
simple simulation data, so we assign a larger penalty b 
for the number of base classifiers in the fitness function 
to produce a simple solution.  

Now we want to compare GA-Ensemble for the 16 
treatments shown in Table 2 to AdaBoost with different 
numbers of iterations (T= 50, 100, 200, 500, 1,000, 
2,000, 5,000, and10,000) based on the simple data set 
I with 10% noise, and to evaluate the performance 
using a test set (n=10,000). 

The test error of AdaBoost when T = 100 goes 
down to 0.0792 and then up as the number of iterations 
increases. The smallest test error among those is 
0.0792, which is not better than any test errors from 
GA-Ensemble with 16 treatment levels. The bold 
number, 0.0194, which is from GA-Ensemble 

maximizing the 15th percentile of margins with a=5.0, b 
= 0.1, indicates the best performance with using 3.1 
stumps. The outliers are ignored by the GA-Ensemble 
solution and are misclassified, as they should be in an 
outlier-resistant solution. Thus GA-Ensemble provides 
a simpler solution that looks more like the original 
population of rectangular data and is more resistant to 
outliers than AdaBoost. 

In addition, we can determine that the final solution 
with a large number of classifiers is not worth 
classifying the simple data. In treatment 3 with a=5, 
b=0.1, and p=0.00, GA-Ensemble produces 11.9 
averaged stumps, which is the largest number of 
classifiers, but the performance is the poorest among 
the 16 treatments based on a data set with 10% noise. 
Most of the test errors are less than 0.03 or around 
0.03 except treatments 3 and 7 so that the effect of 
tuning parameters is not respected for the simple data. 
The best and the worst are from treatment 15 and 3, 
respectively; these have the same combination (5.0, 
0.1) of a and b but p is different (0.15, 0.0, 
respectively). So to classify the data sets with noise, it 
is a good idea to utilize a value of p that is greater than 
the noise level. Furthermore, the size of p may affect 
the number of classifiers for the noise data when the 
trim size is less than the noise level as in treatment 3 
and 7. 

4.2. The Second Simulation 

The second artificial data set is generated from a 
concentric circles structure which has been used 
already in many papers (e.g., [14]). We employed a 
two-dimensional concentric circle structure and 
predictors are arbitrarily generated from a uniform 
distribution on the interval [-1, 1] with n=300 

Table 2: Test Errors for AdaBoost with Different Iterations (T=50, 100, 200, 500, 1,000, 2,000, 5,000, and 10,000) and 
GA-Ensemble with 16 Treatments Based on First Simulation Data with 10% Noise Level. Bold Indicates the 
Best Result between AdaBoost and GA-Ensemble 

AdaBoost GA-Ensemble 

T Test Error St. Error  Treat Test Error St. Error  avg. T Treat Test Error St. Error  avg. T 

50 0.0817 0.0108 1 0.0264 0.0072 3.1 9 0.0294 0.0159 3.3 

100 0.0792 0.0127 2 0.0253 0.0067 3.0 10 0.0229 0.0068 3.0 

200 0.0952 0.0145 3 0.0835 0.0370 11.9 11 0.0270 0.0157 3.3 

500 0.1573 0.0101 4 0.0250 0.0071 3.0 12 0.0297 0.0146 3.2 

1000 0.1222 0.0101 5 0.0578 0.0668 3.6 13 0.0240 0.0048 3.2 

2000 0.2052 0.0066 6 0.0732 0.0968 2.9 14 0.0250 0.0038 3.0 

5000 0.2020 0.0082 7 0.0675 0.0725 6.5 15 0.0194 0.0050 3.1 

10000 0.2036 0.0151  8 0.0304 0.0125 3.5 16 0.0225 0.0073 3.1 
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observations. A response variable, Y !{-1, +1}, is 

given by Y = sign k !! ! sin(x1
2 + x2

2 )( ) , and Y is equal to 

-1 if yi  is less than the median of x1
2 + x2

2  and +1 
otherwise. Therefore the data set has the same 
number of observations in each class, 150 for 
constructing the models and 5,000 observations are 
generated for the test. Decision trees with one and 
three split points and linear combination splits are 
employed as base classifiers to build the final model. 

The circle data is more complex for correctly 
classifying all training data than the first simulation data 
set. In Table 3 and Figure 3, we see that treatments 2, 
6, 10 and 14 which have 1.0 and 0.5 for a and b have a 
worse performance with over 0.435 misclassification 
rate. The final solutions from those treatments have 
two or three classifiers, which are not enough to 
classify this complicated data set well. We observe that 
the best treatments are 3, 7, 11, and 15, which 
averaged 8, 9, or 10 base classifiers in the final 
solution. They performed significantly better than other 
solutions with 2 or 3 classifiers and slightly better than 
all other treatments with solutions having 4 and 5 
classifiers. In Figure 2 we can compare the number of 
classifiers in the final solutions in terms of test errors. 
We can also infer which combinations of parameters 
have the best performance. For example, if we need 15 

base classifiers for a final model, we can verify that 
treatment 3 is the best way to produce 15 base 
classifiers to classify examples. Therefore in order to 
classify a complex data set, we need the final solution 
to include more base classifiers. To do that, we put a 
small value of the tuning constant b for the number of 
base classifiers in the fitness function. 

Table 3 provides a summary of GA-Ensemble for 
decision trees with one and three split points, and 
oblique stump trees based on the circle data set. 
Obviously, GA-Ensemble for 3 split points tends to 
produce a better result than for stumps and oblique 
stump trees, and GA-Ensemble for oblique trees 
achieves better performance than for stumps. Table 4 
presents the win-tie-loss for all pairwise combinations 
of three base classifiers. When we compare decision 
trees with 1 split point and oblique stump trees to 
decision trees with 3 split points, we see that decision 
trees with 3 split points are superior to the others (15-0-
1, 14-0-2), but in treatments 2 and 5, decision trees 
with 3 split points are inferior to oblique stump trees. In 
comparing decision trees with one split point to oblique 
stump trees, we can see oblique stump trees beat 
decision trees with one split point in all treatments (15-
0-1) except treatment 2. From this result, we conclude 
that the best base classifier with the circle data is a 
decision tree with 3 split points. Decision trees with 1 

 Table 3: Test Errors (Standard Errors) of each Treatment for Decision Tree with one and Three Split Points, and 
Oblique Stump Trees Based on the Circle Data Set 

Stump Tree Oblique Tree Three Split Tree 
Treatment 

Test Error St. Error  avg. T Test Error St. Error  avg. T Test Error St. Error  avg. T 

1 0.4480 0.0170 4.3 0.423 0.0305 5.9 0.4213 0.0426 5.4 

2 0.4497 0.0091 2.6 0.4539 0.0308 2.9 0.4549 0.0217 2.6 

3 0.3495 0.0248 14.5 0.3225 0.0241 14.8 0.3187 0.0243 14.1 

4 0.3740 0.0483 7.8 0.3727 0.0308 7.5 0.3646 0.0546 7.8 

5 0.4521 0.0092 2.8 0.3966 0.0432 6.2 0.4060 0.0351 4.5 

6 0.4580 0.0073 2.2 0.4476 0.0277 2.6 0.4349 0.0307 2.7 

7 0.3599 0.0500 10.8 0.3256 0.0244 13.0 0.3098 0.0209 10.4 

8 0.3854 0.0408 6.8 0.3848 0.0548 5.6 0.3727 0.0435 5.8 

9 0.4339 0.0296 3.8 0.4125 0.0374 4.7 0.3962 0.0321 4.4 

10 0.4497 0.0133 2.4 0.4381 0.0301 2.7 0.4380 0.0227 2.4 

11 0.3586 0.0519 13.5 0.3336 0.0253 11.1 0.3140 0.0217 11.4 

12 0.3908 0.0421 6.2 0.3821 0.0378 5.2 0.3725 0.0337 5.8 

13 0.4331 0.0271 4.0 0.4244 0.0204 3.6 0.4086 0.0214 3.9 

14 0.4509 0.0099 2.6 0.4394 0.0253 2.7 0.4378 0.0283 2.5 

15 0.3462 0.0334 10.6 0.3187 0.0274 12.3 0.3057 0.0201 9.1 

16 0.3886 0.0266 6.2 0.3787 0.0342 6.0 0.3561 0.0460 6.2 
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split point are not good choices for base classifiers. We 
can also verify these results in Figure 3, which shows 
the plot of test error for 16 treatments along with three 
different base classifiers. The solid line (black) is from 
the decision tree with one split point, the dashed line 
(red) is from the oblique tree, and the dotted line (blue) 
is from the decision tree with 3 split points based on the 
circle data. Labeling points are the average numbers of 
base classifiers (T). 

Treatments 2, 6, 10, and 14, which have a large 
value of b (= 0.5), have worse outcomes with 2 or 3 
base classifiers. The best performances are achieved 
with a large T in treatments 3, 7, 11, and 15 for all three 
different base classifiers. This clearly indicates that 
more base classifiers and more complicated base 
classifiers are needed for a difficult to classify data set 
such as circle data. The first four treatments are based 
on maximizing the minimum margin and the next four 
on maximizing the 5th percentile of the margins, 
followed by the 10th and 15th percentiles of margins for 
the remaining treatments. As for stumps, four different 
levels of p seem not to be significantly different from 
the results for decision trees with 3 split points and 

oblique trees because we did not find any differences 
in the different levels of p in Table 3. However, we 
observed that the tuning parameter b has a strong 
influence on the results. The value of b = 0.1 produces 
better results than b = 0.5 and the combinations of (a, 
b) = (5.0, 0.1) would be selected for the circle data set 
among 16 treatments regardless of the four different 
values of p (0.00, 0.05, 0.10, and 0.15). 

4.3. Application to Real World Data  

For the real world applications we used three data 
sets from the UCI Machine Learning Repository: 
kyphosis data (81, 3), glaucoma data (196, 62), and 
Wisconsin Diagnostic Breast Cancer data (569, 30). 
The number of observations and predictors are 
displayed, respectively, in parentheses. We used 10-
fold cross-validation for reporting testing set accuracy. 
Sixteen treatments of the tuning parameters, a and b 
with the value of p to maximize, were tested for GA-
Ensemble, which evolved solutions for 2,000 
generations on the training set to get the best solution 
over the 10 runs for each treatment. The more 
generations in the genetic algorithm, the better fitness 

Table 4: Each Cell Contains the Number of Wins, Ties, and Losses between the Base Classifier in that Row and the 
Base Classifier in that Column for the Circle Data  

 DT with 1 Split Point Oblique Stump Tree 

Oblique Stump Tree 15-0-1  

DT with 3 split points 15-0-1 14-0-2 
 

 
     (2)           (3) 

Figure 2: Boxplots of test error for the number of oblique stump trees in a final solution (left). 
Figure 3: The plot of test errors for 16 treatments with three different base classifiers based on the second simulation data. 
Labeling points are the average number of base classifiers out of 10 runs (right).  
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value we have. The number of generations, 2,000, is 
not sufficient to get a convergence of the fitness value 
for large data sets, especially for the Wisconsin 
Diagnostic Breast Cancer data. Because it is too 
expensive to run-time using a current computer 
program, we used 2,000 generations to construct the 
best solution for all real data sets. In the initial random 
solution, we set the number of random base classifiers 
and their weights to five. The results of running the 
three different base classifiers (decision trees with two 
terminal nodes and three split points, and an oblique 
stump tree) are shown for GA-Ensemble in Tables 6, 7, 
and 8. Bold numbers indicate the best generalization 

performance among all treatments from the three 
different base classifiers. The results from AdaBoost 
based on decision tree stumps as a base classifier are 
shown in Table 5. To be fair, the comparison between 
the test errors generated by AdaBoost and GA-
Ensemble is for one split decision trees. 

For the kyphosis data, the test errors from 
AdaBoost are 0.1778 to 0.2333 according to the 
number of iterations in Table 5. We can see that the 
performance is best at T = 50 and worst at T = 2,000, 
and 10,000. AdaBoost with T = 50 is also the best 
performance and with T=10,000 is worst for the 

Table 5: 10-Fold Cross Validation (Standard Errors) from AdaBoost (T=50, 100, 200, 500, 1,000, 2,000, and 10,000) for 
Decision Trees with one Split Point (Stump) Based on the Kyphosis, Glaucoma, and WDBC Data Sets 

T 50 100 200 500 1,000 2,000 10,000 

Test Error 0.1778 0.2111 0.2000 0.1889 0.1889 0.2333 0.2333 
Kyphosis 

St. Error 0.0412 0.0482 0.0399 0.0470 0.0237 0.0452 0.0509 

Test Error 0.2125 0.2250 0.2250 0.2437 0.2188 0.2062 0.2500 
Glaucoma 

St. Error 0.0397 0.0408 0.0191 0.0421 0.0419 0.0229 0.0348 

Test Error 0.0411 0.0268 0.0286 0.0179 0.0232 0.0250 0.0232 
WDBC 

St. Error 0.0100 0.0089 0.0089 0.0071 0.0080 0.0040 0.0053 

 
Table 6:  Test Errors (Standard Errors) with Average T of each Treatment for Decision Trees with one and Three Split 

Points and Oblique Stump Trees Based on the Kyphosis Data. Test Errors are Estimated by 10-Fold Cross-
Validation 

Stump Oblique Decision Tree 
Treatment 

Test Error St. Error  avg. T Test Error St. Error  avg. T Test Error St. Error  avg. T 

1 0.3083 0.3012 3.1 0.2847 0.1876 9.8 0.2736 0.2883 3.7 

2 0.2333 0.1574 2.2 0.2083 0.0962 2.9 0.2236 0.1003 2.4 

3 0.3222 0.1364 4.6 0.2111 0.0627 8.7 0.2111 0.1335 5.2 

4 0.2708 0.1262 3.1 0.2347 0.1608 5.7 0.2972 0.0675 4.4 

5 0.2458 0.1280 2.9 0.2111 0.1043 5.8 0.1750 0.1344 3.2 

6 0.2583 0.1054 2.3 0.2361 0.1724 2.7 0.2250 0.1748 2.5 

7 0.2361 0.1258 4.6 0.1972 0.1459 6.7 0.2208 0.1905 9.2 

8 0.2208 0.0922 3.6 0.1972 0.1459 5.8 0.2611 0.1261 4.3 

9 0.3333 0.2430 3.3 0.2111 0.1876 3.6 0.2361 0.0735 4.3 

10 0.2208 0.1094 2.4 0.2125 0.1773 2.6 0.2000 0.1344 2.6 

11 0.3083 0.1574 5.6 0.2097 0.1444 6.4 0.2611 0.1392 5.4 

12 0.2222 0.0982 4.1 0.2083 0.1632 3.9 0.1736 0.1350 4.6 

13 0.1708 0.1280 2.8 0.2125 0.1449 2.4 0.2236 0.0811 2.1 

14 0.2194 0.1657 2.6 0.2000 0.1687 2.2 0.2236 0.1431 1.8 

15 0.2250 0.3107 2.6 0.2097 0.1318 3.6 0.2722 0.1653 4.0 

16 0.1847 0.1202 2.8 0.1861 0.1223 2.1 0.2708 0.1262 1.9 
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glaucoma data. AdaBoost has the worst performance 
at T=10,000 for both data sets. In other words, using a 
large number of base classifiers does not produce 
better results. Based on the WDBC data, AdaBoost has 
the best performance at T = 500 and the worst at T = 
50. 

Tables 6, 7, and 8 provide a summary of GA-
Ensemble on the 16 treatments with three different 
base classifiers. Here we consider the one split point 
decision tree to compare with AdaBoost performance. 
The 16 treatments resulted in better interpretability, 
with fewer than 12 base classifiers on average in a final 
solution than the final model from AdaBoost for three 
data sets. For the kyphosis, 8 of 16 treatments have 
less than 3 stumps. Treatment 11 has the largest 
average number of base classifiers (T = 5.6) but not a 
very good result in terms of test set error. GA-
Ensemble on treatment 13 with 2.8 average base 
classifiers did the best compared to AdaBoost. 
Treatments 8, 10, 12, 13, 14, 15, and 16 have better 
performance than AdaBoost with 

T = 2000 and 10,000. The remaining treatments are 
inferior to AdaBoost. When we compare for the 
glaucoma data, GA-Ensemble on treatments 8, 12, and 
16 has better performance than the best of AdaBoost 

with T=2,000. Finally, for the WDBC data, we compare 
GA-Ensemble to AdaBoost based on decision trees 
with one split point. Results show that AdaBoost had 
better performance than GA-Ensemble on all 16 
treatments for WDBC data. Because this data set is 
relatively large with n=569 and p=30, 2000 generations 
may not be enough to construct a good solution. 
Nevertheless, GA-Ensemble has a strong advantage of 
interpretation of its final models over AdaBoost. In 
addition, the WDBC data has low data complexity and 
contamination. Oh and Gray [14] showed that 
AdaBoost performs very well and better than GA-
Ensemble in the case of low contaminated data. From 
these comparisons, we can conclude that GA-
Ensemble is superior to AdaBoost for the glaucoma 
and inferior for the WDBC data. For the kyphosis data, 
they are somewhat equally matched. However, the final 
models with a few base classifiers by GA-Ensemble 
have a significant interpretability advantage over those 
by AdaBoost.  

Now we consider more complex base classifiers 
than stump trees. In Tables 6, 7, and 8, we can see 
how GA-Ensemble works with different base classifiers 
and, in Table 9 we can compare the win-tie-loss for all 
pairwise combinations of three base classifiers. We 

Table 7: Test Errors (Standard Errors) with Average T of each Treatment for Decision Trees with one and Three Split 
Points and Oblique Stump Trees Based on the Glaucoma Data. Test Errors are Estimated by 10-Fold Cross-
Validation 

Stump Oblique Decision Tree 
  

Test Error St. Error  avg. T Test Error St. Error  avg. T Test Error St. Error  avg. T 

1 0.2963 0.2552 3.6 0.2288 0.0862 12.2 0.2550 0.1817 5.2 

2 0.2400 0.2221 2.9 0.2387 0.1001 3.0 0.2263 0.1146 3.2 

3 0.2213 0.0838 9.8 0.2200 0.0919 18.3 0.1988 0.0625 12.7 

4 0.2150 0.1055 4.4 0.1975 0.0989 6.6 0.1888 0.1048 3.7 

5 0.2400 0.0738 3.2 0.1837 0.0624 5.1 0.2050 0.0762 3.9 

6 0.2575 0.2333 2.3 0.2112 0.1400 2.3 0.2150 0.0973 2.8 

7 0.2450 0.0762 11.1 0.2275 0.0837 11.4 0.2038 0.0928 5.9 

8 0.1762 0.1152 4.3 0.1525 0.0731 4.5 0.2437 0.0963 3.9 

9 0.2462 0.1149 3.9 0.1688 0.0581 6.0 0.2075 0.0764 3.3 

10 0.2275 0.0692 2.1 0.1850 0.0784 2.1 0.2162 0.0928 2.1 

11 0.2437 0.0934 9.0 0.1950 0.0643 10.2 0.1825 0.1041 8.8 

12 0.1963 0.1036 3.9 0.1737 0.0480 4.3 0.1988 0.0944 4.2 

13 0.2075 0.1167 2.9 0.2025 0.0885 2.8 0.1938 0.0599 3.3 

14 0.2112 0.1203 3.0 0.1825 0.1041 2.8 0.2275 0.0916 3.1 

15 0.2125 0.0860 5.2 0.1600 0.0843 6.0 0.1900 0.0615 5.6 

16 0.1562 0.1111 3.5 0.1575 0.0708 3.7 0.1888 0.0809 3.3 
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expect that the more complex base classifiers with 
more than two splits and the linear combination splitting 
rule will work better than stump trees, but computation 
is more expensive. 

For the kyphosis in Table 6 and 9, we see that the 
best performance with a = 1, b = 0.1, and p = 0.15 is 
0.1708 error rate using 2.8 stump trees as an average 
number of base classifiers. However, the performances 
of an oblique stump tree are superior to the stump tree 
(14-0-2) in terms of test set error, except in treatments 
13 and 16. Oblique stump tree wins in 10 treatments, 
loses in 5 and ties in only 1 to the decision tree with 3 
split points. Based on the glaucoma data, oblique 

stump tree is superior to stump tree and inferior to 3 
split points. As shown in Table 7, the test error using 
4.5 average oblique stump trees in treatment 8 (with a 
= 5, b = 0.5, and p = 0.05) is 0.1525 in Table 7 which is 
the best effect among all treatments with different base 
classifiers. Finally, we compare for WDBC. A decision 
tree with 3 split points has a slight advantage over a 
stump tree (10-0-6). An oblique stump tree is superior 
to other base classifiers and the best performance 
using 4.2 average classifiers is 0.0527 error rates at 
the treatment 7 with a = 5, b = 0.1, and p = 0.05. The 
decision trees with one and three split points are 
inferior to an oblique stump tree (1-0-15 and 3-0-13, 
respectively). 

Table 8: Test Errors (Standard Errors) with Average T of each Treatment for Decision Trees with one and Three Split 
Points and Oblique Stump Trees Based on the WDBC Data. Test Errors are Estimated by 10-Fold Cross-
Validation 

Stump Oblique Decision Tree 
Treatment 

Test Error St. Error  avg. T Test Error St. Error  avg. T Test Error St. Error  avg. T 

1 0.0826 0.0343 3.7 0.0704 0.0323 5.4 0.1597 0.2961 3.9 

2 0.1317 0.0961 2.9 0.1512 0.1747 2.7 0.0914 0.0529 2.9 

3 0.0596 0.0333 8.0 0.0580 0.0310 10.5 0.0685 0.0364 6.8 

4 0.0702 0.0104 4.4 0.0632 0.0431 4.4 0.0668 0.0307 2.9 

5 0.0598 0.0301 2.9 0.0581 0.0251 2.4 0.0791 0.0323 3.0 

6 0.0773 0.0300 2.4 0.0703 0.0167 2.4 0.0632 0.0311 2.7 

7 0.0544 0.0345 3.3 0.0527 0.0219 4.2 0.0632 0.0398 3.1 

8 0.0720 0.0099 4.3 0.0668 0.0386 3.1 0.0562 0.0284 2.7 

9 0.0878 0.0421 1.1 0.0546 0.0309 1.2 0.0914 0.0285 1.2 

10 0.0984 0.0322 1.0 0.0862 0.0490 1.2 0.1090 0.0275 1.0 

11 0.1055 0.0320 1.2 0.0669 0.0341 1.3 0.0860 0.0448 1.7 

12 0.1036 0.0076 4.6 0.0581 0.0407 1.1 0.0843 0.0338 1.0 

13 0.0985 0.0346 1.3 0.0704 0.0345 1.1 0.1036 0.0290 1.2 

14 0.1002 0.0379 1.0 0.0686 0.0319 1.1 0.0914 0.0437 1.1 

15 0.0931 0.0350 1.9 0.0634 0.0347 1.5 0.0895 0.0391 2.0 

16 0.0984 0.0083 3.5 0.0685 0.0400 1.4 0.0860 0.0441 1.1 

 
Table 9: Each Cell Contains the Number of Wins, Ties, and Losses between the Base Classifiers in that Row and the 

Base Classifiers in that Column for the Kyphosis, Glaucoma, and WDBC Data Sets 

  DT with 1 Split Point Oblique Stump Tree 

Oblique Stump Tree 14-0-2   
Kyphosis 

DT with 3 split points 10-0-6 5-1-10 

Oblique Stump Tree 15-0-1   
Glaucoma 

DT with 3 split points 12-0-4 10-0-6 

Oblique Stump Tree 15-0-1   
WDBC 

DT with 3 split points 10-0-6 3-0-13 
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DISCUSSION AND CONCLUSION 

We tested the effect of the parameters of a new 
fitness function and the increased complexity of base 
classifiers on several data sets including two simulated 
data sets and three real-world data sets. Our results 
provide several implications. First, it is a good 
indication to apply a value of the maximizing p-th 
percentile of margin, p, that is greater than noise levels 
and a large (small) value of the tuning constant b to 
generate less (more) base classifiers for better 
performance on a simple (complex) data. From 
comparing GA-Ensemble with 16 treatments to 
AdaBoost with different numbers of iterations based on 
stumps as a base classifier, GA-Ensemble provides 
solutions that are simpler than those found by 
AdaBoost with better or equal performance. In addition, 
through comparisons with more complex base 
classifiers than stump trees, a complex classifier as a 
base classifier works better than a simple one, but the 
computational cost will be higher.  

Based on the results of the second simulation data, 
we expected that more complex classifiers would work 
better than less complex classifiers. However, the 
results for the real data sets are different from what we 
expected. For future study, we propose to increase the 
number of generations in the genetic algorithm to get 
better convergence of the fitness value, because we 
utilized a decision tree with three split points and an 
oblique stump tree which are more complex than a 
stump tree as a base classifier. It would be of 
interesting to use full decision trees with no pruning as 
base classifiers. Additionally, for a better prediction 
future research needs to consider hybrid combining 
AdaBoost and GA-ensemble to make up for their 
particular weakness.  
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