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Abstract: Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized 
processing in magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. 

Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. 
Most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image 
features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. 

This paper attempts to systematically investigate significant attributes from popular image features and textures to 
facilitate subsequent automation process. In our approach, a total number of 39 image attributes are considered that are 
based on three categories: 1) Image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Tamura texture features. 

To obtain the ranking of discrimination in these texture features, a T-test is applied to each individual image features 
computed in every image based on noise levels, intensity distributions, and anatomical geometries. Preliminary results 
indicated that the order of significance in the texture features approximately varies in noise, slice, and normality. For 

distinguishing between noise levels, the features of contrast, standard deviation, angular second moment, and entropy 
from the GLCM class performed best. For distinguishing between slice positions, the features of mean and variance from 
the basic statistics class and the coarseness feature from the Tamuraclass outperformed other features. 
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1. INTRODUCTION 

Neuroimaging is one powerful tool used to 

investigate the structure and function of the brain in 

both health and disease [1]. Magnetic resonance 

imaging (MRI) has been one of the most frequently 

used neuroimaging modalities due to its high contrast 

among different soft tissues, high spatial resolution 

across the entire field of view, and multi-spectral 

characteristics [2, 3]. The functional MRI (fMRI) is a 

functional neuroimaging procedure that uses MRI 

technology to measure brain activity by detecting 

associated changes in blood flow. Recently, diffusion 

anisotropy measures derived from diffusion tensor MRI 

(DT-MRI) data, such as fractional anisotropy, relative 

anisotropy and ellipsoidal area ratio, are commonly 

used to assess microstructural features and white 

matter connectivity in the human brain. In particular, 

the diffusion-weighted images (DWIs) are used to 

estimate diffusion tensors and their derivative 

measures of anisotropy. 

However, random noise usually appears during the 

acquisition of all described MR images above that 

includes eddy-current distortions, physiological motion 

and instabilities of the MRI scanning hardware  
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[4, 5]. The noise not only affects the medical diagnostic 

tasks but also degrades many computerized image 

processing and analysis procedures such as tissue 

classification, visualization, super-resolution, segmen- 

tation, and registration. For example, the influences of 

noise in DWI data can impair the validity and precision 

of tensor estimation. Consequently, noise removal or 

reduction is important and essential to maintain the 

quality of brain MR images for a wide variety of 

subsequent applications. 

Nevertheless, most denoising algorithms require 

laborious tuning of parameters that are often sensitive 

to specific image features and textures [6-10]. 

Automation of these parameters through artificial 

intelligence techniques will be highly beneficial. 

However, this will induce another problem of seeking 

appropriate meaningful attributes among a huge 

number of image characteristics for the automation 

process. This paper attempts to systematically 

investigate significant attributes from widely used 

image features and textures for future developments in 

the automation process. 

2. METHODS 

The proposed scheme consists of two phases: 

feature extraction and feature selection, as illustrated in 

Figure 1. 



Discrimination Ability Analysis on Texture Journal of Advances in Biomedical Engineering and Technology, 2015, Vol. 2, No. 1    29 

2.1. Texture Feature Extraction 

There are 39 different image features that are 

obtained based on the three different feature extraction 

categories in every single image as following. 

2.1.1. Basic Image Statistics 

We compute the mean intensity (Mean), standard 

deviation (SD), variance (VAR), and entropy (ENT) of 

the input gray-level image. 

2.1.2. Gray Level Co-occurrence Matrix (GLCM) 

The gray level co-occurrence matrix (GLCM)[11] 

describes some easily computable textural features 

based on gray tone spatial dependencies using 

             (1) 

Where 
  
M (i, j)  is the quantized gray tone at position 

  
(i, j) , 

 
W

x
 and 

 
W

y
 are the dimension of the resolution 

cells of the image ordered by their row-column 

designations,  
  
W (x, y)  is the gray level value in the 

cell, x and y are the spatial relation between two 

adjacent pixels defined by the angle  and distance d 

from the cell origin. This texture-content information is 
then normalized to obtain the matrix of relative 

frequencies  P   
(i, j)  as 

         (2) 

Table 1 summarizes the textural features based on 

Eq. (2). We first compute the difference image l
n
, which 

is the difference between the input image I and its 

Gaussian filtered image 
 
l
D

 based on Eq. (3). Compute 

the textural features of GLCM using l
n
 with d = 1. 

           (3) 

2.1.3. Tamura Texture Features 

Tamura texture features [12-14] are calculated based 
on human visual and psychological perception, and We 
compute three Tamura features, namely, coarseness 
(COA), contrast (CON), directionality (DIR) of the input 
gray-level image. The three features are correlated 
closely with human perception and can be measured 

by the following  

a). Coarseness 

Take the average intensity value at every pixel 

  
(x, y)  over neighborhoods whose sizes are integer 

powers of 2: 

     (4) 

where 
  
f (i, j)  is the gray level at 

  
(i, j) ,

  
k 0,.....,5  

For each pixel (x, y) take the differences between 

pairs of averages of non-overlapping neighborhoods on 

the opposite side of the point in both horizontal and 

vertical directions as 

Horizontal Case 

           (5a) 

Vertical Case 

  

           (5b) 

 

Figure 1: Flow chart of the proposed schemes to investigate the discrimination ability of texture features extracted from three 
different categories: basic image statistics, gray level co-occurrence matrix (GLCM) and Tamura texture feature. 
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At each pixel, select the best size that gives 

  
S

best
(x, y) = 2k the highest output value, where  k  

maximizes E in either direction: 

        (6) 

Finally, 
 
F

crs
 can be measured by: 

 

             (7) 

Where  M  and  N  are the effective width and height of 

the image, respectively. 

b). Contrast 

         (8) 

Where  is the variance of the gray-level probability 

distribution,  n is a positive number, and μ is the mean 

intensity. 

Directionality 

       (9) 

        (10) 

        (11) 

where 
 
n

p
 is the number of peaks,  

 p
 is the

 
pth  

peak position of  
  
H

D
, w

p
 is the range of the 

 
pth  peak 

between valleys,  r  is a normalizing factor related to 

quantizing levels of , and 
 
H

D
, is the edge probability 

histogram by quantizing  using Eq. (11) and counting 

the points with the magnitude 
 

G by Eq. (10) over a 

threshold  t  using 

      (12) 

Where 
  
N (k)  is the number of points at which 

  
(2k 1) / 2d < < (2k +1) / 2d  and G > t . The 

purpose of thresholding 
 

G  by t  is to prevent 

counting of unreliable directions, which are not 
regarded as edge points. 

 

Table 1: Textural Features and Equations of GLCM 

Feature Equation 

Angular Second Moment 

 

Contrast 

 

Entropy 

 

Homogeneity 

 

Dissimilarity 

 

Mean ,  

Standard Deviation (SD)   

Correlation 
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2.2. Feature Selection 

To obtain the most significant attributes, a T-test 

[15, 16] is then applied to each individual image 

features to evaluate the ability of discrimination in two 

categories: noise level and slice position. The 

evaluation is based on the distinguishing ability 

between noise levels, intensity distributions, and 

anatomical geometries of two images according to the 

average p-value. The features with an average p-

value<0.05 represent that they can effectively 

distinguish characteristics differences in image data 

[17]. 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

We used the famous Brain Web image data of 

normal and multiple sclerosis (MS) T1-weighted MR 

image volumes in five different thicknesses: 1mm, 

3mm, 5mm, 7mm, and 9mm with various levels of 

noise and intensity non-uniformity to evaluate our 

methods[18].There were 4672 images in either 

anatomical type that resulted in 9344 images in total for 

the experiments. Tables 2 and 3 present the order of 

significance in the normal dataset based on the 

average p-value of each individual feature using the T-

test for noise level and slice position, respectively. In 

Table 2, for the case of the frequently used slice 

thickness of 1 mm, the contrast features in four 

directions in the GLCM class performed best, followed 

by the standard deviation features with respect to both 

axes in four directions. The best features for 

distinguishing between noise levels for the cases of 3 

mm and 5 mm were the entropy and angular second 

moment in four directions in the GLCM class, 

respectively. While the standard deviation features 

played an important role in all slice thickness cases in 

Table 2, the mean intensity feature had the best 

distinguishing ability between slice positions in Table 

3.The rankings of discrimination ability in the texture 

features for the MS cases in noise level and slice 

position are reported in Tables 4 and 5, respectively. 

Once again, in Table 4, the features of contrast, 

standard deviation, and entropy in the GLCM class 

outperformed other features in distinguishing between 

noise levels. In Table 5, the mean intensity feature in 

the basic statistics class still performed best in 

distinguishing between slice positions. 

Table 2: T-test Results of Normal Model Based on the P-Value: Noise Level 

Thickness: 1mm 

p-value Feature 

<0.05 CON(0 , 45 , 90 , 135 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ),ASM(0 , 45 , 90 , 135 ),HOM(45 ),ENT(0 , 

90 ), DIS(90 , 135 ) , CON 

< 0.1 COR(0 ,45 ,90 ,135 ) ,HOM(0 , 90 , 135 ), ENT, SD,VAR,DIS(0 , 45 ) ENT(135 ,45 ), 

Thickness: 3mm 

p-value Feature 

<0.05 ENT(0 , 45 , 90 , 135 ), CON(135 ), ASM(0 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ), CON 

< 0.1 CON(0 , 45 , 90 ), DIS(0 , 45 , 90 , 135 ), HOM(45 , 90 , 135 ), COR(0 , 45 , 90 , 135 ), ASM(45 , 90 , 135 ) 

Thickness: 5mm 

p-value Feature 

< 0.1 ASM(0 , 45 , 90 , 135 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ), DIS(0 , 45 , 90 , 135 ), CON(0 , 45 , 90 , 

135 ), ENT(0 , 45 , 90 , 135 ), COR(0 , 45 , 90 , 135 ) , HOM(45 , 135 ) , CON 

Thickness: 7mm 

p-value Feature 

< 0.1 SD(x,0 , 45 , 90 , 135 ),SD(y,0 , 45 , 90 , 135 ), CON(0 , 45 , 90 , 135 ), CON, HOM(45 , 135 ), DIS(0 , 45 , 135 ), 

ASM(0 , 45 , 90 , 135 ), ENT(0 , 45 , 90 , 135 ), COR(0 , 45 , 90 , 135 ) 

Thickness: 9mm 

p-value Feature 

< 0.1 SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ), CON(0 , 45 , 90 , 135 ), ASM(0 , 45 , 90 ), COR(0 , 45 , 90 ), 

DIS(0 , 45 , 135 ), HOM(45 , 135 ), CON 
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Table 3: T-test Results of Normal Model Based on the P-
Value: Slice Position 

Thickness: 1mm, 3mm 

p-value Feature 

<0.05 Mean 

< 0.1 COA 

Thickness: 5mm, 7mm, 9mm 

p-value Feature 

<0.05 Mean 

< 0.1 COA, VAR, SD 

 
4. CONCLUSION 

We have investigated significant attributes from 

various image texture features in brain MR images for 

future developments in automatic denoising study. A 

total number of 39 image attributes were considered 

that are based on three categories: basic image 

statistics, GLCM, and Tamura texture features. A wide 

variety of 9344simulated T1-weighted MR images from 

the BrainWeb dataset were used to evaluate and test 

the image features. A t-test was applied to each 

individual image features computed in every image to 

evaluate the discrimination ability. It is observed that 

regardless of anatomical types of normal and MS there 

was no significant difference in the ranking of the 

features. For distinguishing between noise levels, the 

features of CON, SD, ASM, ENT, HOM, and DIS from 

Table 4: T-test Results of MS Model Based on the P-Value: Noise Level 

Thickness: 1mm 

p-value Feature 

<0.05 CON(0 , 45 , 90 , 135 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ),ASM(45 , 90 , 135 ),ENT(0 ,45 , 90 , 

135 ), CON, DIS(90 , 135 ),HOM(45 ) 

< 0.1 DIS(0 , 45 ), ASM(0 ), HOM(0 , 90 , 135 ),COR(0 ,45 ,90 ,135 ), ENT,SD,VAR 

Thickness: 3mm 

p-value Feature 

<0.05 ENT(0 , 45 , 90 , 135 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ), CON(135 ) 

< 0.1 CON(0 , 45 , 90 ), DIS(0 , 45 , 90 , 135 ), HOM(45 , 90 , 135 ), ASM(0 ,45 , 90 , 135 ), COR(0 , 45 , 90 , 135 ), 

CON 

Thickness: 5mm 

p-value Feature 

< 0.1 ASM(0 , 45 , 90 , 135 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ), DIS(0 , 45 , 90 , 135 ), CON(0 , 45 , 90 , 

135 ), ENT(0 , 45 , 90 , 135 ), COR(0 , 45 , 90 , 135 ) , HOM(45 , 135 ) , CON 

Thickness: 7mm 

p-value Feature 

< 0.1 SD(x,0 , 45 , 90 , 135 ),SD(y,0 , 45 , 90 , 135 ), CON(0 , 45 , 90 , 135 ), CON, HOM(45 , 135 ), DIS(0 , 45 , 135 ), 

ASM(0 , 45 , 90 , 135 ), ENT(0 , 45 , 90 , 135 ), COR(0 , 45 , 90 , 135 ) 

Thickness: 9mm 

p-value Feature 

< 0.1 CON, HOM(45 , 135 ), SD(x,0 , 45 , 90 , 135 ), SD(y,0 , 45 , 90 , 135 ), CON(0 , 45 , 90 , 135 ), ASM(0 , 45 , 90 ), 

COR(0 , 45 , 90 ) , DIS(0 , 45 , 135 ) 

Table 5: T-test Results of Normal Model Based on the 
P-Value: Slice Position 

Thickness: 1mm 

p-value Feature 

<0.05 Mean 

< 0.1 COA 

Thickness: 3mm 

p-value Feature 

<0.05 Mean, COA 

Thickness: 5mm, 7mm, 9mm 

p-value Feature 

<0.05 Mean 

< 0.1 COA, VAR, SD 
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the GLCM class performed best. For distinguishing 

between slice positions, the features of Mean and VAR 

from the basic statistics class and the feature of COA 

from the Tamura class performed best. Nevertheless, 

the order of significance in the texture features 

approximately varied in noise level, slice position as 

well as models in both normal and MS cases. 
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