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Abstract: An originally designed 3-dof (2-dof perturbation platform and 1-dof cabin) human balance testing system 
(DETES) has been developed for delivering mechanical and perceptual stimuli in a controlled embedding environment in 
order to investigate sensory-motor control of human erect posture at physiological and/or pathological conditions. The 
human balance (especially studying vestibular system involved mechanisms) demonstrating complex (nonlinear) 
dynamical behavior in the context of postural adjustments having ecological roots/meanings (information) is to be tested 
(by means of quiet and perturbed stance) and analyzed for supporting (differential) diagnosis, monitoring/following the 
progress of the disease, and creating the new adaptive motor learning protocols for rehabilitation. 
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1. INTRODUCTION 

Balance being a complex function, has been 
defined as a mean providing postural stability. The aim 
of postural control is to keep body position in confined 
space and certain orientation. Balance is maintained by 
information from the three sensory afferent systems: 
visual, somatosensory and vestibular; proprioception is 
implicitly considered. Information from these three 
systems and corrective reflex motor responses provide 
to keep the center of gravity in the bearing surface and 
to maintain the balance [1]. Testing the human balance 
in different (active and/or passive) sensory 
environments through mechanical perturbations 
(known as dynamic posturography [2]) is important to 
understand the physiological control mechanisms of 
human erect posture, diagnose and/or rehabilitate the 
postural or balance clinical problems [3]. Computerized 
Dynamic Posturography (CDP, developed by L.M. 
Nashner in 1982, while studying human balance 
performance on astronauts at NASA [4]) based on the 
assessment of visual, vestibular and proprioceptive 
inputs, evaluates the balance system entirely being 
considered as an important and valuable method for 
evaluating postural stability [5, 6], where patient stands 
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during the balance test being evaluated for functional 
balance states similar to daily life experiences. 
Although CDP helps to the guidance and support in 
terms of diagnosis, it especially provides benefit in 
patients’ follow-up and rehabilitation [7, 8]. Clinical indi- 
cations of CDP are complaints about dizziness, 
patients with known pathology on postural control 
pathways [9], secondary gain expectation or suspected 
presence of symptoms due to anxiety and abnormal or 
suspicious test results from the other balance  
tests [10].  

2. HUMAN BALANCE SYSTEM TESTING 
ENVIRONMENT  

2.1. Mechanical Properties of the Platform and the 
Cabinet 

We have developed a 2-dof tilting human balance 
testing machine (DETES), which can perform 
sinusoidal (antero-posterior (A-P) and medio-lateral (M-
L)) tilts at 0.05 – 2 Hz frequencies and 1 - 10° of peak 
amplitude perturbations. The rotation axis of the tilting 
platform is set to 34.5 cm below than the rotation axis 
of the ankle. The human balance testing system has 
also a 1-dof tilting cabinet with the same frequency 
response characteristics, whose axis of rotation passes 
through the ankle rotation axis. Figure 1 shows the 
hard-ware implementation of the system. 
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AC Servo-motors were Allen-Bradley© OEMax 
(RD15-A) and the driver CSD3 with the specifications 
1.5 kW maxpower, 4.77 Nm max torque capacity, 3000 
revolution/minute and the quadrature encoder inside 
with the characteristics of 2500 pulse/revolution. A 
reducer of ×80 (reducing the angular velocity by 
increasing the torque) has been used in-front-of the 
actuators. An A/D (NI cRIO© 9073) card is implemented 
to the system for controlling the perturbation platform 
and collecting data. 

2.2. Design Properties and Safety Preventions  

The testing cabinet shown at Figure 1 is of 
cylindrical structure with the diameter being 195 
centimeter (cm) and the height is 190 cm. The diameter 
of the tilting platform is 80 cm where a 40×60 cm force-
plate is mounted on. The physical environment (inside 
the cabinet) is 60 cm higher than the floor where there 
is a supporting table fixed to the ground in-between the 
stair-steps for the subjects (patients) to get inside to the 
testing environment and the tilting platform (equi-
levelling stair-steps/cabinet with the tilting platform, see 
Figure 2). Inside the cabinet the physical environment 
is all black and dark through the curtains fixed to the 
circumference, where the intensity and the frequency of 
the illumination can be controlled as well as a monitor 
(40×25) is standing ahead of the subjects (at the eye 
level and approximately 75 cm forward, along the eye-

sight), by which visual stimuli can be presented to the 
subjects. There exists a safety harness fixed to the 
ceiling where the subjects are dressed with and the 
holders are fixed to the supporting table, which are 
parallel to the orientation of the subjects. They are 
ready to use in an emergency incident throughout the 
experiments. It is also important to note that the gap is 
at most 2 mm at its closest position in-between the 
supporting (fixed) table and the moving (tilt) platform, 
where it is prevented for any foot-piece (especially 
fingers) to get into. Additionally there exists an 
emergency button to stop the running tilt platform by 
shutting down the power to servo-motor, which is also 
triggered through the signals coming from proximity 
sensors.  

2.3. Software Implementation, Calibration, 
Initialization and Control  

Six proximity sensors have been used for leveling 
the tilt platform and the cabinet horizontally. A 
Labview© code which has been embedded into the 
cRIO starts with initializing the tilt platform position by 
using the proximity sensor signal (calibration process), 
which (from there on) serves as a reference platform 
position all throughout the data collection period. Next, 
the code processes the encoder signals (motor position 
information) inputted to the card in order to control the 
perturbation platform through a PID controller (the 

 

Figure1: Hard-ware implementation of the human balance test system which is composed of electronic (programmable A/D 
card) and electro-mechanical parts.  
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control commands to the actuator are sent to run the 
servo-motor in speed-mode). 

2.4. Experimental Protocol Design 

Figure 2 shows the block diagram for designing 
experiments and running the experimental protocol. 
The host computer (PC1) showed in Figure 2 controls 
the flow of the experimental protocol in the physical 
environment of the set-up. The experimental design 
has been created in the virtual environment by using 
State flow 7.6 (Matlab® 2010b, Simulink 7.6) and run 
through Real-time Windows Target 3.6. There are 2 
triggering signals outputted by the host computer (TS1 
and TS2) for synchronization of the running Labview 
code embedded in cRIO 9073 (running the platform) 
and for the kinematics data collection computer (PC2, 
through AW Station) through inertial sensors (Xsens, 
MVN Biomech®) respectively. The signals S1 and S2 
seen in Figure 2 are for servo-on command, which runs 
the driver of the servo-motors and through which the 
actuators are switched off by shutting down the signal 
(in the case of emergency), while a second signal (by 
switching off a red-light which is already on) is for pre- 
caution to the subject to get into the cabinet, warning 
that the calibration process is over respectively.  

2.5. Sensors and Data Collection 

There are two basic data collection units (for kinetic 
and kinematic data) from the subjects during the trials 
of human balance test at static and/or dynamic 
conditions. The dynamic conditions are created over 

either mechanical perturbations and/or perceptual 
stimuli. Kinetic data (Ground Reaction Forces) is 
collected by a force-plate (Bertec®, FP4060); i.e., 3 
force (Fx, Fy, Fz) and 3 moment (Mx, My, Mz) time 
signals are collected by setting the sampling rate and 
data collection period of time. Fx and Fy are the friction 
forces in-between the subject and the tilting platform 
during the trials, while Fz is the vertical force applied by 
the subject to the platform (it is the weight of the 
subject if the trial is quiet stance). My and Mx are the 
two moment signals which are important for computing 
the center-of-pressure coordinates in the x- and y-axes 
respectively (see Figure 3). Center-of-pressure (CoP, 
an active response) is caused by the projection of the 
Center-of-Mass (CM) of the subject to the horizontal 
plane (on the force-plate) and is known as the basic 
balance metric (see Data Analyses and Basic Human 
Balance Metric Section, Figure 3). Mz is the twisting 
moment created by the subject on the force-plate. On 
the other hand, kinematics data (through tri-axial linear 
accelerometers and angular velocity sensors, Xsens 
MVN Biomech®) from the foot, lower extremities, pelvis 
(CM), upper extremities, trunk, and the head (overall 
with 15 inertial sensors, in orange at Figures 2 and 3) 
are received. By using a 3D-magnetometer, it then 
becomes possible to compute absolute and relative 
position (joint angles like ankle, hip, shoulder, head etc) 
of/from the foot, limbs, trunk and the head in 3-D space 
[11]. Kinetics and kinematics data are collected and 
recorded into separate files by different computers, 
after then the data (stored) analyses are performed off-
line.  

 

Figure 2: Block diagram of experimental design and data collection set-up. AO, AI, DO, and DI units stand for Analog Output, 
Analog Input, Digital Output, and Digital Input modules of the A/D card (NI cRIO®) respectively.  
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3. THE ANALYTICAL METHOD 

3.1. Data Analyses and Basic Human Balance 
Metric, CoP 

Figure 3 shows the physiological control diagram of 
the neuro-musculo-skeletal system for human erect 
posture.  

As seen in Figure 3, Ground Reaction Forces from 
which CoP is estimated and body kinematics are two 
important outcomes of human biomechanical system 
created by the muscle forces acting to joints as control 
torques (e.g. ankle, hip, neck, etc) which can be 
modulated through reflexes triggered by different 
senses [14]. Also it is important to note that there is a 
continuous neural stimulation on the spinal neuron 
pools (modulating signals from upper centers), where 
spinal/stretch and/or postural reflexes are triggered 
[15]. Because of the continuously getting updated 
status of the spinal pools, it is essential to have an 
estimation about the current state of the spinal neurons 
and/or muscle activation; i.e., measuring the electro-
potentials during muscle activation (as an EMG module 
to be added to the Human Balance Testing System). 
As the human postural control is a hierarchically 
structured complex system with sensory and motor 
redundancies, the solution to balance problems is not 
unique; thus in order to understand the control 

strategies used by the central nervous system, it is not 
sufficient to measure the kinetic and kinematics of the 
biomechanical system only, but also necessary to have 
an estimation about the inner states (e.g. muscular 
electrical activity) of the control system as well [16].  

3.2. Case Study (A Healthy Versus Bilateral 
Vestibular Loss Patient) 

Data analyses from CoP signal (basic measurement 
for estimating human balance in quasi static and 
dynamic conditions, which is derived from kinetic 
outputs) is performed at time and frequency domains 
[17]. Figures 4a and b show exemplar CoPx and CoPy 

time signals of an healthy subject collected at quiet 
stance and their related Fast Fouriér Transformations 
(FFT, see below paragraph for an explanation/ 
 implication of FFT, Figures 4c and d). Figure 6a shows 
both CoP signals (CoPx and CoPy) at the horizontal 
plane such that the path traced by CoP in time during a 
balance test presents complex dynamical character- 
istics (like an individual’s signature), where nonlinear 
dynamical metrics can be computed about the 
information capacity, dynamical order, and the stability 
of the individual postural control system [18-20]. Never-
the-less path-length (Figures 4a and b), variability of 
the CoPx and CoPy signals and their velocities 
(variance of the CoP displacements and their 

 

Figure 3: Physiological control diagram of the human neuro-musculo-skeletal system biomechanics where the basic human 
balance metric; i.e., CoP is shown as the active and speedy response of the human neuro-muscular system to the projecting 
Center-of-Mass (CM) of the human subject on the horizontal plane [12, 13]. CoP on the horizontal plane is defined by its x- (-My 
/ Fz) and y- (Mx / Fz) coordinates.  
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velocities) give invaluable information about the status 
(estimation about physiological versus pathological 
conditions) of the human balance (see Figures 5a and 
b compared to Figures 4a and b). 

 
Figure 4: a and b) CoPx and CoPy time signals (quiet stance, 
eyes open) of a healthy subject on a compliant surface 
respectively. c and d) FFT of the time series presented at a 
and b. 

 

Figure 5: a and b) CoPx and CoPy time signals (quiet stance, 
eyes open) of a BVL patient on a compliant surface 
respectively. c and d) FFT of the time series presented at a 
and b. 

 

Figure 6: CoP sway trajectories on the horizontal plane for a 
healthy (a) and BVL subject (b). The time series presented at 
Figures 4 (a and b) and 5 (a and b) have been plotted across 
each other (time implicit).  

On the other hand, Figures 5a and b show CoPx 
and CoPy time signals of a Bilateral Vestibular Loss 
patient (BVL) and its related FFTs. FFT of a given time 
series gives information about the power at the 
particular frequencies embedded in the overall 
dynamics observed. For example, CoPx time series 
shown at Figure 4c demonstrate power at very low 
frequencies (below 0.1 Hz), which is a characteristic 
pattern for a healthy subject’s CoPx signal [21-23]. 
However, if the FFT pattern of a BVL patient is 
examined (see Figure 5c) it is easily observed that 
magnitude (compare Figures 4c and 5c) and the 
distribution of the power at the frequency spectrum of 
the CoPx dynamics is totally different (may be 
pathognomonic); such that maximum power is no more 
seen at the very low frequency, rather it has shifted 
towards somehow higher frequencies (at about 1 Hz, 
see Figures 5c and d); very likely to be pointing to an 
instability at the postural balancing adjustments. 
Furthermore, the distribution of the power at the 
healthy subject’s FFT diagram shoes a maximum at the 
very low frequency band and a decreasing tendency up 
to the frequencies at about 1 Hz (see Figures 4c and 
d), while the FFT pattern of the BVL subject 
demonstrates more than one maxima without a 
decreasing tendency. The former pattern (for the 
healthy subject) might be revealing dynamical 
characteristics of the complex human erect posture 
(searchlike behavior), while the latter pattern (BVL 
subject) may be presenting the loss of information 
about the postural control (deterioration at the search 
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behavior) with the new emerging frequency bands of 
instability [24, 25]. Characterization of the postural 
sway dynamics at the frequency domain is then 
proceeded by computing Power Spectral Density 
(PSD) function estimates, area under PSD (is actually 
the variance of the time series [26]), centroidal and/or 
median frequency, frequency dispersion (as a measure 
of power scattering at the spectrum) that has the 
potential of differential diagnosis in-between the 
different originated balance problems as well as 
enlightening the route to the treatment and/or 
rehabilitation of the disorder. 

DISCUSSION 

An original human balance testing system for 
delivering mechanical and perceptual stimuli in order to 
test the sensory-motor performance of the human 
balance system has been developed and started being 
used in the Vestibular Clinics for analysis of the 
postural control mechanisms in physiological/ 
pathological conditions aiming to help diagnosis, 
monitoring/following the progress of the disease, and 
rehabilitation processes. It is known that human erect 
postural control is mainly supplied by three senses; 
somatosensory, vestibular sense, and vision 
(proprioception is implicitly involved), where any two of 
these three senses are essential/necessary in order to 
solve a balance problem [27-29]. Horak et al. (1990) 
showed that postural corrections given to platform 
disturbance (a translational input) became deteriorated 
at vestibular loss patients when the somatosensory 
originated information has been lacking. This is 
because the vestibular system introduces the sense of 
verticality to the Central Nervous System (CNS), which 
is the universal reference for solving any kind of earth-
based equilibrium problem [1, 30-32]. In the case of 
lacking vestibular driven orientation information, the 
constraints used by CNS in solving the equilibrium 
problem are strictly restricted: i.e., freedom for 
movement is decreased [33, 34]. So far, we have 
observed this restricted movement pattern in some of 
the BVL patients we have tested at their habitual (quiet) 
stance (as a loss of low frequency band < 0.1 Hz, see 
Figures 4 and 5 c and d, Figure 6); whereas when they 
get disturbed, the postural response appeared has 
shown high-frequency band characteristics, which we 
have interpreted as a “tendency to fall”. We are 
investigating Unilateral Vestibular Loss patients for the 
same paradigm (a search like behavior at the low 
frequency band versus a fall like behavior at the high 
frequency band) at both quiet and perturbed stance 

conditions as well [35]. Furthermore DETES is also 
being used for monitoring/following the progress of the 
disease in both UVL and BVL patients by being tested 
for their daily life performances at their compensation 
period after acute dizziness/vertigo attack [36]. On the 
other hand, the Vestibular Lab where DETES is 
mounted, is specialized for reporting whether the 
reason of the complaints of the navy staff about 
suffering from dizziness is due to the motion sickness, 
through simulating sea conditions [37]. 

We are planning to develop an electrophysiological 
unit to be integrated to DETES for recording electro-
potentials from the muscular contractions precisely 
synchronized with mechanical perturbations during 
perturbed trials for understanding/investigating the 
postural control strategies. It is also important to use 
electro-potential recording unit for delivering an active 
impulsive stimulus intervening to either sensory (Group 
Ia, see, Figure 3) or motor neuronal (α motor neuron) 
activation in order to understand the role of 
proprioception (by modifying stretch reflex response 
[14, 15]) in postural control strategies/mechanisms.  

CONCLUSION 

The human balance system having redundancies at 
sensory systems delivering information to hierarchically 
structured processors acting at sensory fusion in 
different domains (such as time, frequency, etc) and/or 
at motor actuators (either having many muscles acting 
on a joint or an actuator spanning more than one joint, 
polyarticularity) presents a complex dynamics, where 
nonlinear dynamical tools of investigation becomes 
inevitable, especially to understand how the information 
arises. The developed test system (with its ambience) 
considers and is aware of the importance of ecological 
roots in deciphering postural control strategies 
(especially related to vestibular components), thus is 
cautious in designing either quiet or perturbed stance 
trials and analyzing the relevant data. 
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