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Abstract: Protein structures are prone to modification based on the fundamental rules of design and function. 
Calculations of free binding energies ( G) of chemical molecules (effectors) that bind to proteins are important in 
molecular signaling processes and catalytic mechanisms of certain key enzymes. These calculations can be obtained via 
in silico and theoretical approaches. A series of 48 pockets were identified in thermolysin (KEI) and the four biggest 
pockets were selected for their suitable sites for modification. Application of molecular docking on phosphoethanolamine 
(PSE) and 1,10-phenanthroline (PHN) that act as intermediate ligands in the designated protein complex showed 
favorable final docked energy at different pockets (-8.49 to -4.80 kcal/mol). Analysis on docking of a divalent metal ion 
(Ca2+) to ligand (PSE) produced a final docked energy of -4.15 kcal/mol within acceptable distance (1.5 Å  M  3.0 Å). It 
was found that the thermolysin-phosphoetanolamine-Ca2+ represented the putative protein complex of semisynthetic 
metalloprotease. Combinatorial modeling methods were applied in order to determine the best metalloenzyme complex. 
The identification of the potential protein pocket was conducted using CASTp. Selected ligands and metal ions were 
docked into each pocket using AutoDock 3.05. Analyses on their docking energy, non-covalent interaction as well as 
their geometry were conducted in order to determine the best metalloenzyme complex. This complex displayed the 
lowest docking energy with the additional Ca2+ suitably docked. It was hypothesized that metal ions can add new 
functionality to proteins and catalyze some of the challenging biological reactions, particularly in the pharmaceutical and 
fine chemicals industries.  
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1. INTRODUCTION 

Enzymes are mainly biomolecular polymers that are 
able to catalyze chemical reactions. For many years, 
researchers have utilized the diverse chemical 
reactions driven by enzymes in biotechnological indust- 
ries. One such industrial application known as biopro- 
cessing, aims to exploit enzymes in many industrial 
processes. The development of such enzymatic tools, 
however, requires a detailed structural and chemical 
understanding of the enzyme. Enzyme engineering is 
an invaluable tool for elucidating biocatalytic mechani- 
sms as well as producing enzymes for industrial 
purposes. Approaches developed for in vivo chemical 
modification and in silico modification promises to 
increase the scope to alter existing proteins for better 
stability and functionality [1]. Through in silico 
molecular design, three-dimensional conformations and 
enzymatic mechanisms can be clearly predicted and  
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improved, which lead to a better understanding of the 
fundamentals of protein chemistry. 

The electrostatic environment at the active site of an 
enzyme is one of the major factors that guide the 
substrate to the binding site in the correct position. 
Metal ions can contribute positively in this process, 
often binding groups in a stereochemically rigid 
manner, thereby helping to control and enhance the 
activity of the enzyme [5]. The goal was to tailor and 
analyze the dependence of the binding sites of 
thermolysin on a bound ligand and metal ion. Included 
in this report is a recently concluded systematic 
structural study on molecular docking between thermo- 
lysin and Ca2+ divalent metal ion which attached to the 
intermediate phosphoethanolamine (PSE) ligand. The 
properties of a semisynthetic metalloenzyme that 
illustrates the importance of ligand diversity and metal 
ion binding to protein were also recognized. 

2. MATERIALS AND METHODS 

AutoDock (Version 3.05) is a widely used program 
that was employed to generate an ensemble of docked 
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conformations for each ligand molecule to protein [13]. 
Sausa et al. reported that AutoDock had become the 
most frequent docking software since 2001 [15]. 
Generally, this molecular docking program can be 
divided into three main programs: AutoGrid, AutoTor 
and AutoDock. In order to run AutoDock, grid maps 
have to be calculated using AutoGrid. For consistency, 
all receptor-ligand interactions were prepared using the 
same parameters; (i) number of grid points were set to 
60 Å  60 Å  60 Å in x, y and z axis, (ii) spacing 
between grid points was set to the default value of 
0.375 Å, and (iii) a grid center was chosen slightly off 
the center axis of the crystal structure coordinates of 
themolysin specific pocket. In this study, the 
Lamarckian Generic Algorithm (LGA) was selected to 
identify the binding conformations of the complex [13]. 
The step size was set to 0.2 Å for translation and 5° for 
orientation and torsion. The other important parameters 
for LGA calculation were reasonably set as follows; (i) 
an initial population of random individuals with a size of 
50; (ii) a maximum number of 1.5  106 energy 
evaluations; (iii) a maximum number of generations of 
27,000; (iv) an elitism value of 1 for surviving the step 
into the next generation; (v) a mutation rate of 0.02, 
which was the probability that a gene would undergo a 
random change; and (vi) a crossover rate of 0.80, 
which was the probability proportional selection. The 
pseudo-Solis and Wets local search method was 
applied by having a maximum of 300 iterations per 
local search; the probability of performing local search 
on an individual in the population was 0.06; the 
maximum number of successes or failures was 4, in 
both cases; and the termination criterion for the local 
search, was 0.01. 

2.1. Preparation of Target Molecule, Ligands and 
Metal Ions 

The coordinate of thermolysin-substrate free 
structure coded as 1KEI was downloaded from the 
Brookhaven Protein Data Bank (PDB) [16]. The 
thermolysin structure was allocated for their polar 
hydrogen atoms and each atom was assigned using 
Kollman to united atom charges. Two chemical ligands, 
phosphoethanolamine (PSE) and phenanthroline 
(PHN) selected for screening were also obtained from 
PDB. Their flexibility and torsion were defined through 
AutoTors. Two different divalent metal ions from 
alkaline earth metals (Mg2+ & Ca2+) and transition 
groups (Fe2+ & Zn2+) were selected for docking to the 
protein-ligand complex. Protein pockets were identified 
using Computational Atlas Topography of Protein 
(CASTp) [11], an online resource for locating, 

delineating and measuring concave surface regions on 
three-dimensional structures of proteins. 

3. RESULTS AND DISCUSSION 

Interactions between a protein, called a receptor, 
and a small molecule, called a ligand, usually occurs in 
depressed regions, called pockets, on the surface of 
the receptor. Geometric approaches to recognize 
pockets on a protein usually involve the definition of 
surfaces on a protein. The three-dimensional structure 
of protein provides the necessary shape and physico-
chemical texture to facilitate these interactions [14]. 
Structural information of protein pockets allows for 
detailed study of the relationship between protein 
structure and function, as these pockets accommodate 
ligands, prosthetic groups or functional water 
molecules through conformational flexibility [12]. 
Moreover, identification and size characterization of 
surface binding sites or protein pockets are the initial 
steps in protein structure-based design [2]. 

A series of 48 pockets were identified in 
thermolysin, where the pockets are widely distributed 
on the protein surface. Four of the largest pockets (No. 
45, 46, 47 and 48) in thermolysin were obtained from 
CASTp (Figure 1). The pockets were determined by 
locating and measuring protein topology in solvent 
accessible surface (SA, Richard’s surface) and 
molecular surface (MS, Connally’s surface) [11]. 

 
Figure 1: Visualization of thermolysin (1KEI from PDB) with 
four main pockets as determined by CASTp. The possible 
binding sites are shown as pocket 48 (Cyan), Pocket 47 
(Green), pocket 46 (Blue) and pocket 45 (Red). 

3.1. Protein-Ligand Docking 

It is important to treat the ligand as a flexible 
molecule mimicking the structure that naturally 
associates with high intramolecular strain, which is 
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largely offset by intermolecular interaction enabled by 
its fit [3]. The ligand flexibility and constraint was 
determined using AutoTor. This utility interactively 
queries the user about rigid position of the molecule 
(the “root”) and the rotatable torsions (the “branches” 
and “torsion”). Once the ligand’s flexibility has been 
identified, the ligand can be docked to the protein in 
flexible form in order to discover the best outfit with the 
lowest docking energy. Davies and Distefano reported 
that for a successful design of semisynthetic 
metalloenzymes with novel properties such as the 
ALBP-Phen-Cu(II) complex, additional metal ions must 
be isolated from the protein with minimum interaction 
with the protein [5]. By considering some possible non-
covalent interactions, phosphoethanolamine (PSE) and 
phenanthroline (PHN) were selected as the 
intermediate ligands. They function to hold the metal 
ion at one end and the protein at the other end via non-
covalent interactions involving oxygen and nitrogen 
atoms available in the ligand. 

With some minor exceptions of disulfide bonds, it is 
the non-covalent interactions that are responsible for 
the three-dimensional structure of proteins. The two 
most vital non-covalent interactions are hydrogen 
bonding and hydrophobic interaction. Moreover, 
Kahraman et al. (2007) discovered that the hydropho- 
bicity of the binding pocket seems to correlate with the 
properties of the ligand bound to the protein [9]. Table 

1 shows the lowest Edocked (kcal/mol) for each ligand 
docked to the four main pockets in thermolysin. The 
conformation of KEI-PSE48 complex at the lowest 
docking energy (-8.49 kcal/mol) formed six hydrogen-
bond interactions and five hydrophobic contacts with 
nearby residues, particulary at the catalytic sites of 
His146 and Glu166 which may able to inhibit the 
catalytic activity. Therefore, PSE ligand may have 
acted as a competitive inhibitor to the substrate at 
pocket 48 and not suitable for further modification. 
Interestingly, the activity of PSE at pocket 45 (-6.71 
kcal/mol as shown in Table 1) involved two hydrogen-
bonds and 11 hydrophobic interactions with the 
neighboring residues (Table 2). The distance between 
pocket 45 and the active site could make it a good 
location for further modifications with metal ion. 

3.2. Metal Ions Docking Analysis 

Two different types of divalent metal ions from 
alkaline earth metals (Mg2+ & Ca2+) and transition 
groups (Fe2+ & Zn2+) were docked to the ligand site of 
the KEI-PSE45 complex. To verify the final conforma- 
tion of the new semisynthetic metalloenzyme, an array 
of procedures was introduced; 1) Final docking energy 
– only spontaneously and thermodynamically stable 
conformations with negative docking energy were 
selected for further modification, 2) Allowed metal ions 
distance – docking results of each metal ion were 

Table 1: Final Edocked (kcal/mol) of Two Intermediate Ligands at Four Largest Pockets in Thermolysin as Calculated by 
AutoDock 3.05 

Final Edocked Energy (kcal/mol) 

Protein-Ligand Complexes  

Pocket 48 Pocket 47 Pocket 46 Pocket 45 

 
KEI – PSE (phosphoethanolamine) 

-8.49 -6.74 -5.80 -6.71 

 
KEI – PHN 

(phenanthroline) 

-7.06 -6.60 -5.70 -6.06 
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studied for their 3-dimentional conformations using 
InsightII. An average distance of metal ions proposed 
by Castagnetto et al. (2001), 1.5Å  M  3.0Å was set 
as the criterion [4]. Only the metal ions within the cutoff 
distance from the ligands were selected for further 
investigation, 3) Types and angles of metal ions 
complex – the coordinates for each metal ion were 
analyzed for their type and specific geometry. The 
conformations were then compared with other 
crystallized metalloenzymes in the Metalloenzyme Data 
Base (MDB) for their type and geometry.  

The Ca2+ ion was found to have the lowest Edocked of 
-4.13 kcal/mol. The final Ca2+ conformation was noticed 
to interact with the PSE intermediate ligand and nearby 
residues within the acceptable distance of interactions. 
As shown in Table 3, the KEI-PSE-Ca2+ complex 
formed a distorted trigonal bipyramidal geometry by 

coordinating to five neighboring atoms. The geometry 
is similar to the reported trigonal bipyramidal geometry 
in rat annexin V protein complex coded as 1a8a [17].  

4. CONCLUSIONS 

An important branch of novel protein design is 
performed through engineering and designing of new 
metal-binding sites in native proteins. Metal ions can 
add new functionality to proteins and help catalyze 
some of the most difficult biological reactions. By 
employing in silico molecular docking, screening of 
putative ligands and metal ions for possible interactions 
may enhance the discovery of novel semisynthetic 
enzymes and lead to new protein functions. The 
framework which was introduced for the experiment 
may be a competent method for screening potential 
metal ions in this in vivo route.  

Table 2: Visualization of Docking and the Non-Covalent Interactions Within the Complex of KEI-PSE45 Using Viewer 
Lite and Ligplot 4.0 

Docking Orientation of PSE  
Ligand onto Pocket 45 

3-Dimensional Position for  
Protein-Ligand Complexes 

Non-Covalent Interactions for  
Protein-Ligand Complexes 

  

 

 

 

 

 

 

 

Final Edocked = -6.71 kcal/mol 

H-bond interactions = 2 

Hydrophobic interactions = 11 

 

 

Table 3: Visualization of Docking and Geometrical Analysis of KEI-PSE45-Ca 

Visualization of the New-Complex 

(KEI-PSE45-Ca
2+

) 

Acceptable Interaction Distance of Ca
2+ 

with 

Nearby Residues in KEI-PSE45 Complex 
Ca

2+
 Geometry 

 
* Pocket 45 only 

 
Final Edocked = -4.13 kcal/mol 

 

 

 

 

 

 

 

 

 
No. of contacts = 5 

Type of geometry = Distorted trigonal bipyramidal 
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2+

 

O 

O 
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O 
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ABBREVIATIONS AND NOTATIONS 

CASTp  = Computed Atlas of Surface Topography of 
Protein 

MDB  = Metalloenzyme Database 

LGA  = Lamarckian Generic Algorithm 

PSE  = Phosphoethanol amine 

LigPlot  = Schematic diagrams of protein-ligand 
interactions 

PDB  = Protein Database 

1KEI  = Thermolysin 

PHN  = Phenanthroline 
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