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Abstract: Among the conducting organic polymers (COPs), polyaniline (PANI) and polypyrrole (PPY) are the most 

investigated. Even though many efforts have been done to overcome the traditional synthetic methods typically based on 
the use of strong stoichiometric oxidants, the growing environmental sensitivity and the necessity of pure products, 
especially in medical and biological fields, make the COPs “green” synthesis a topic of the utmost importance. Herein, 

we report a brief overview of our results in the synthesis of PANI and PPY operating under mild conditions, using H2O2 
and O2 as the oxidants in the presence of different catalysts: colloidal Au nanoparticles (AuNPs), AuNPs/TiO2, AuNPs/C, 
metallic Cu, Cu salts and Fe3O4 NPs. 
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INTRODUCTION 

As narrated by Nina Hall, the surprising story of 

conducting organic polymers (COPs) is the result of a 

fortuitous but fruitful collaboration among three extraor- 

dinary scientists from different disciplines and different 

continents: Hideki Shirakawa, a polymer chemist at the 

University of Tsukuba, Alan MacDiarmid, an inorganic 

chemist at the chemistry department at Pennsylvania, 

and Alan J. Heeger, a physicist at the University of 

California [1]. 

Their achievements were published in 1977 [2] but 

their genius was awarded with the Nobel Prize for 

Chemistry in 2000 “for their discovery and development 

of conductive polymers” [3]. 

Although polyacetylene was the first synthesized 

and characterized COPs, its high instability to air and 

difficulty of processing gradually reduced the interest in 

this material. Meanwhile, other two polymers caught 

the scientific community interest: polyaniline (PANI, 

Figure 1) and polypyrrole (PPY, Figure 2). 

Depending on the oxidation and doping level, PANI 

can exist in different forms ranging from the fully 

reduced leucoemeraldine, to the half oxidized emerald- 

ine, as well as the totally oxidized pernigraniline. The 

PANI backbone in its emeraldine form consists in an 

equal number of benzenoid and quinoid rings and ami- 

ne and imine nitrogen atoms. Even though amine 

groups are more basic than imine ones, the doping pro- 

cess (protonation) preferentially occurs on these latter, 

because the resulting doped polymer (emeraldine salt, 

Figure 3) is stabilized by resonance [4]. 
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Figure 1: Polyaniline structure. 

 

 

 

Figure 2: Polypyrrole structure. 

 

 

 

Figure 3: Emeraldine salt structure. 

It was demonstrated that the doping process has a 

strong effect on the polymer conductivity, switching 

emeraldine from an insulator (about 10
-11

 S cm
-1

) to a 

conductor (up to 10 S cm
-1

) [4, 5]. 

If on the one hand PANI doping consists in a 

protonation reaction, on the other hand for PPY it 

consists in treating the polymer with either an electron 

donor or an electron acceptor, able to switch the 

polymer from its reduced insulating form (about 10
9
 S 

cm
1
) to its oxidized conducting form (up to 100 S cm

1
) 

(Figure 4) [6]. 

Thanks to their ease of synthesis, environmental 

stability, tunable conductivity and great versatility [7, 8] 

they can be applied in a wide spectrum of fields, 

ranging from electronic displays, [9] to electrode 

materials, [10] to molecular electronic circuit elements, 

[11] as well as sensors [12]. 
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FROM CONVENTIONAL CHEMICAL SYNTHESIS TO 
SUSTAINABLE APPROACHES 

Conventional chemical routes for polyaniline and 

polypyrrole preparations are waste-intensive. In fact, 

both PANI and PPY syntheses are often carried out at 

high temperature, in the presence of inorganic oxidants 

and toxic solvents [13]. Besides the chemical appro- 

aches, enzymatic and electrochemical methods have 

been proposed [14]. 

Whereas the use of enzymes is attractive but limited 

to small scale preparations, the electrochemical prepar- 

ations are more interesting and industrially feasible. 

However, despite all the drawbacks, the chemical 

polymerization is the oldest and still the most popular 

method employed to prepare PANI and PPY in bulk 

quantity. It is based on the oxidative coupling of 

monomers employing strong oxidants, as (NH4)2S2O8, 

K2Cr2O7, KIO3 and metals in high oxidation states  

[15-18].
 
This approach is environmentally troublesome, 

owing to the formation of polluting co-products, e.g. 

ammonium sulfate in the case of APS, and heavy 

metals. 

The growing interest in sustainable chemical 

processes and the necessity of producing high purity 

materials for specific applications have opened the way 

to the use of more eco-friendly reagents, hydrogen 

peroxide and molecular oxygen in primis, with the aid 

of a catalyst. 

H2O2 is an appealing oxidant as its reduction 

product, H2O, eliminates the problems related to 

polluting co-products and simplifies the post treatment 

of the polymeric materials. As far as the thermody- 

namic aspects are concerned, H2O2 shows a redox 

potential (1.77 V) high enough to polymerize aniline 

(ca. 1.46 V) [19] and pyrrole (1.2 V) [20] monomers. 

However, the polymerization reaction carried out by 

H2O2 is slow but can be accelerated by the use of 

proper catalysts [21-23]. 

Conversely, the lower redox potential of molecular 

oxygen (1.23 V) would suggest a thermodynamic 

barrier to the oxidative polymerization, especially for 

aniline. 

However, the pioneering investigations of Toshima 

et al. allowed the synthesis of polyaniline and 

polypyrrole employing molecular oxygen in the 

presence of Cu-based catalysts [24]. The resulting 

material exhibited poor electroconductive properties 

probably related to the presence of branching and 

contamination by organic chlorine, along with carbonyl 

and hydroxyl derivatives. Further studies allowed to 

improve the PPY conductivity by replacing copper 

catalysts with soluble iron (III) [25]. 

Herein, we report our contribution to polyaniline and 

polypyrrole syntheses by innovative sustainable appro- 

aches with a particular focus on the catalytic aspects 

[26-30]. 

EXPERIMENTAL  

The details about the experiments are available in 

the literature [26-28, 30]. 

RESULTS AND DISCUSSION 

Gold Nanoparticles as Catalysts for Pyrrole and 
Aniline Oxidative Polymerization  

Even though gold nanoparticles have been widely 

employed as catalysts in organic molecules Oxidetion, 

[31-33]
 

their application in the aniline and pyrrole 

oxidative polymerization reactions has not been 

extensively investigated. 

Inspired by our experience in the field of catalysis 

[31-32]
 

recently we have focused our efforts on 

optimizing COPs environmentally friendly synthesis 

exploiting the catalytic activity of gold nanoparticles and 

our results are reported in the sections below. 

Polypyrrole Synthesis 

Although the metal-assisted pyrrole polymerization 

is a thermodynamically easier process than that of 

aniline, it has attracted less attention.  

Our pioneering investigations, carried out in 2009, 

demonstrated that gold nanoparticles (AuNPs) are 

promising catalysts for pyrrole polymerization in the 

 

Figure 4: Polypirrole doping. 
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presence of both H2O2 and molecular oxygen/air as the 

oxidants [27]. 

Au NPs with a mean diameter of 3.6 nm were 

prepared as a colloidal dispersion in accordance with 

the literature [33]. 

As reported in Figure 5, when the reaction was 

carried out under air at room temperature for three 

days polypyrrole was not produced. However, the 

colour of the reaction mixture turned dark gradually, 

indicating the presence of polymers characterized by 

low molecular weight (oligomers). 

 

Figure 5: AuNPs catalytic effect on pyrrole polymerization 
using air, molecular oxygen and hydrogen peroxide as the 
oxidants. 

Repeating the experiments using pure oxygen as 

the oxidant, in the absence of AuNPs a small amount 

of dark solid materials was obtained, thus 

demonstrating a modest auto-oxidation of pyrrole. 

By adding colloidal gold to the pyrrole hydrochloride 

solution, a strong catalytic effect was observed, leading 

to achieve the polymeric material in 99% (under 

molecular oxygen) and 73% (under air) yield after 3 

days. 

Thanks to its higher oxidizing power, hydrogen 

peroxide was able to polymerize pyrrole also in the 

absence of AuNPs, thus producing the corresponding 

polymer in 57% yield after 1 day. 

Similarly as the aerobic oxidation, adding colloidal 

AuNPs to the pyrrole solution allowed to increase the 

yield up to 99%. 

The kinetics of polypyrrole formation was investiga- 

ted during the pyrrole oxidative polymerization by 

molecular oxygen. The results show that the aerobic 

polymerization of pyrrole needs 8 h before a detectable 

amount of polymer is produced. Before this induction 

time, only oligomers are produced, as evidenced by the 

peculiar dark colour of the solution, afterwards 

polypyrrole yield increases by increasing AuNPs 

amount and reaction time (Figure 6). 

 

Figure 6: Polypyrrole yield vs reaction time using molecular 
oxygen as the oxidant. 

Once the reaction was finished, the catalyst was not 

recovered from the polymeric matrix either because the 

amount of AuNPs employed was too low to justify the 

cost of the catalyst recovery or the presence of gold in 

the organic matrix might slightly contribute to the 

conductivity of the material. 

The presence of AuNPs in the polymeric matrix was 

actually detected by X-ray powder diffraction 

spectroscopy (XRPD, data not reported) and the 

results showed that during the polymerization reaction 

agglomeration phenomena occurred, causing a growth 

of the mean diameter from 3.6 to 42 nm. 

The TEM microscopy (Transmission Electron 

Microscopy) did not allow to identify metallic 

nanoparticles in the final polymer, likely owing to the 

small amount of AuNPs below the sensitivity of the 

instrument, but emphasized the influence of the type of 

oxidant on the PPY morphology: from rod-like to 

square-like. 

Concerning the conductivity measurements, the low 

gold nanoparticles concentration in the polymer did not 

seem to enhance the performances. The conductivity 

values ranged from 2.74·10
-4

 to 4.09·10
-3

 S/cm. 

Polyaniline Synthesis  

Until 2008, for the PANI/Au composites preparation 

HAuCl4 played the role of oxidant. During the reaction 

HAuCl4 was reduced to Au nanoparticles, leading to a 

final Au-decorated polymer [18, 19, 34-36]. After the 

discovery of AuNPs catalytic activity in the pyrrole 

oxidative polymerization, [27] we decided to extend our 
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investigation to the aniline oxidative polymerization 

reaction [28]. 

Unlike polypyrrole, the high redox potential of the 

couple aniline/emeraldine emichloridrate (ca. 1.46 

V)[37] does not allow to carry out the polymerization 

reaction using molecular oxygen or air as the oxidants. 

On the contrary, thanks to its higher redox potential 

(E°= 1.78 V), hydrogen peroxide would be effective in 

aniline polymerization. However, the reaction resulted 

to be too low and for this reason it was carried out in 

the presence of proper catalysts [22-24, 37-41]. 

We demonstrated that the addition of a colloidal 

dispersion of AuNPs (mean diameter of 3.6 nm) to an 

aniline hydrochloric solution in the presence of 

hydrogen peroxide as the oxidant had only a modest 

catalytic effect (4-5% yield), while in the absence of 

AuNPs H2O2 alone was not able to perform the reaction 

(Table 1) [28]. 

Table 1: Oxidative Polymerization of Aniline with 
Different Amounts of H2O2 

Entry 
Aniline/Au 

(molar ratio) 

H2O2 : Aniline 

(molar ratio) 
Yield % 

1 0 1 0 

2 1000 1 4.8 

3 1000 2 4.8 

4 1000 4 4.0 

 

Acting on aniline/Au molar ratio and maintaining the 

reaction conditions reported in Table 1, yield increased 

up to the asymptotic value of 27%, reached at An/Au = 

250 molar ratio (Figure 7). 

 

Figure 7: AuNPs catalytic effect on aniline polymerization 
using H2O2 as the oxidant. 

Such a limitation can be attributed to the short life-

time of unsupported gold nanoparticles, easily under- 

going agglomeration, as confirmed by XRPD analyses 

(data not reported). 

In order to overcome this limit, AuNPs were 

supported on two kinds of supporting materials (carbon 

X40S and titania P25) and the results are summarized 

in Figure 8. 

 

Figure 8: Comparison between 0.5%Au/C and 1%Au/TiO2 
catalysts during aniline polymerization (Aniline/Au = 1000 
molar ratio, room temperature, H2O2/An= 1, molar ratio). 

Even though carbon-supported AuNPs resulted to 

be more stable than the corresponding colloids, the 

achievements in terms of yield were still poor (11.4%). 

On the contrary, when TiO2 was used as the support, 

the catalytic activity of AuNPs surprisingly grew, thus 

producing polyaniline in 70.1% yield.  

The superior performance of titania with respect to 

carbon was already evident during the blank tests: 

whereas unloaded titania led to a dark color of the 

reaction mixture, sign of an incipient aniline 

polymerization, unloaded carbon resulted to be 

completely inert. 

This suggests that the extraordinary activity of 

Au/TiO2 catalyst is due to a synergistic effect between 

gold and support. 

Metal Copper and Copper Salts Catalysts for the 
Synthesis of Polyaniline 

The first work on copper-catalyzed aniline 

polymerization is dated 1994 [24].
 

In this paper 

Toshima et al. reported the use of copper salts (Cu
2+

) 

as catalysts for the aerobic polymerization of aniline. 

However, polyaniline was obtained in insulating form 

(emeraldine base) with a modest yield (50%). These 

investigations were continued by Bicak and Karagoz 

[42]. 

Afterwards, Dias et al. elaborated new sophisticated 

copper complexes for the preparation of polyaniline 

starting from aniline and aniline dimer, N-(4-

aminophenyl)aniline, using H2O2 as the oxidant and 

water/acetonitrile mixture as the solvent [22, 23]. 
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For the materials prepared by aniline dimer, the 

authors reported 50% yield in the presence of 

pyrazolylcopper (II) complex and no solid material in 

the absence of organometallic complex, justifying this 

result with a catalytic effect of the copper species. 

Recently, we have revisited the oxidative 

polymerization of N-(4-aminophenyl) aniline in eco-

friendly conditions, using molecular oxygen or 

hydrogen peroxide as the oxidants in aqueous solution 

and in the presence of metal copper and copper salts 

as the catalysts [28]. 

First of all it is important to highlight the advantages 

but also the disadvantages related to the use of N-(4-

aminophenyl) aniline rather than aniline monomer. If on 

the one hand aniline dimer is more than four times 

expensive than the corresponding monomer, on the 

other hand its oxidative polymerization reaction is 

easier, it does not need strong stoichiometric oxidants 

and does not lead to toxic co-products formation, such 

as benzidine. Until now all these drawbacks have 

limited the PANI preparation in large scale [43, 44]. 

We observed that stirring an aqueous solution of 

aniline dimer (AD) and hydrochloric acid (AD/HCl = 1, 

molar ratio) under oxygen (P = 3 bar) for three days, a 

green insoluble material with 13% yield, identified as 

emeraldine salt, was obtained. To test the catalytic 

activity of metallic copper and copper salts (Cu
2+

 and 

Cu
1+

), the reaction was repeated in the presence of 

copper species (AD/Cu = 20, molar ratio) under the 

same conditions. The results are reported in Figure 9. 

 

Figure 9: Polyaniline synthesis using metallic copper (Cu), 
CuCl2 and CuCl as the catalysts (AD/Cu = 20, molar ratio), 
molecular oxygen as the oxidant (P = 3 bar), water as the 
solvent, room temperature for three days. 

All the copper species exhibited a strong catalytic 

effect on AD polymerization, with yields ranging from 

56% (metallic Cu) to 72% (CuCl2) as well as 76% 

(CuCl). 

The effect of the temperature on the reactions is 

reported in Figure 10. 

 

Figure 10: Polyaniline synthesis using metallic copper (Cu), 

CuCl2 and CuCl as the catalysts (AD/Cu = 20, molar ratio), 

molecular oxygen as the oxidant (P = 3 bar), water as the 

solvent, at T = 80°C for 

The best result (93% PANI yield) was obtained 

operating at T = 80°C in the presence of Cu (0) as the 

catalyst. 

However, to reproduce the reaction conditions used 

by Dias et al. [23] but replacing their sophisticated 

copper scorpionate catalyst with metallic copper (our 

most active catalyst) at T = 80°C a mixture acetonitrile: 

water = 1: 1 v/v was used. Surprisingly, yield dropped 

from 93% to 77%, thus revealing an inhibiting effect of 

acetonitrile during AD polymerization.  

Hydrogen peroxide was also tested as an 

alternative to molecular oxygen. In this case the AD 

polymerization reaction was investigated at room 

temperature for 1 day in the presence and in the 

absence of acetonitrile. The results are summarized 

Figure 11. 

Despite the inhibiting effect of acetonitrile, all the 

copper species employed in the AD polymerization 

reaction showed an important catalytic effect which 

enabled to produce a high quality conducting 

polyaniline, as confirmed by the conductivity 

measurements (2·10
-2

 S/cm). 

As reported by Toshima and Genies, [24, 45]
 
the 

couple Cu(I)-Cu(II) can act as an electron transfer from 

an organic radical species to molecular oxygen or 

hydrogen peroxide. 

Concerning metallic copper, it must be underlined 

that a preliminary fast dissolution process is necessary.  
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Fe3O4 Nanoparticles Catalysts for the Synthesis of 
Polyaniline 

Among the catalysts employed in the aniline 

oxidative polymerization by hydrogen peroxide, Fe-

based species are probably the most investigated [40, 

46-59]. 

Among them Fe3O4 nanoparticles are particularly 

interesting for their outstanding magnetic properties. 

The possibility to combine the electroconductivity of 

PANI with the magnetic behaviour of nanosized magn- 

etite opens the way to innovative materials characteri- 

zed by new properties, useful for many applications, 

such as colour imaging, magnetic recording media, soft 

magnetic materials and ferrofluids. 

Starting from the pioneering investigations of Yang 

et al. [60] and motivated by our will to produce COPs 

by innovative environmentally friendly approaches, we 

recently reported a new one-pot method to produce 

electrical and magnetic PANI/Fe3O4 nanocomposites 

[30]. 

Fe3O4 NPs were synthesized as powder and 

ferrofluid (dispersion in toluene) with a mean diameter 

of 11 nm. In the presence of both molecular oxygen 

and hydrogen peroxide as the oxidizing agents the two 

types of magnetic NPs showed similar catalytic activity, 

as reported in Tables 2 and 3. 

As confirmed by absorption atomic spectroscopic 

analyses and XRPD investigations, at the end of the 

reaction all the inorganic nanoparticles were 

transferred in the final composites and their mean 

diameter remained unchanged, thereby demonstrating 

that the catalytic activity of Fe3O4 NPs is not due to 

dissolution phenomena. 

Table 2: Catalytic Oxidative Polymerization of N-(4-
Aminophenyl) Aniline (AD) in the Absence and 
in the Presence of Fe3O4, Using O2 (3 bar) as 
Oxidant. Reaction Time = 3 Days 

Ferrofluid NPs Powder NPs 

AD/Fe3O4 (Molar Ratio) 

Yield % Yield % 

no Fe3O4 0 0 

681 2 9 

343 7 10 

228 10 14 

137 15 25 

50 46 48 

20 55 57 

10 60 62 

5 69 68 

 

Even though the two types of Fe3O4 NPs, powder 

and ferrofluid, exhibited similar catalytic activity in the 

N-4(aminophenyl)aniline oxidative polymerization, they 

differently affected the morphology of the final 

composites. More in detail, the ferrofluid-type magnetic 

NPs produced PANI/Fe3O4 nanocomposites with a 

preferential morphology of nanorods with a broad 

diameter distribution (30–110 nm). On the contrary, the 

powder-type Fe3O4 NPs led to materials with a more 

irregular structure. 

In order to explain this different behaviour and 

inspired by the literature [61-66] a mechanism of 

 

Figure 11: Polyaniline synthesis using metallic copper (Cu), CuCl2 and CuCl as the catalysts (AD/Cu = 20, molar ratio), H2O2 as 
the oxidant (H2O2/AD= 1.5, molar ratio), at room temperature for 1 day in H2O and H2O/CH3CN as the solvents. 
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nanorods formation was proposed, consisting in an 

interfacial polymerization. 

Table 3: Catalytic Oxidative Polymerization of N-(4-
Aminophenyl) Aniline (AD) in the Absence and 
in the Presence of Fe3O4, Using H2O2 as 

Oxidant (H2O2/AD= 3 Molar Ratio). Reaction 
Time = 24 h 

Ferrofluid NPs Powder NPs 

AD/Fe3O4 (Molar Ratio) 

Yield % Yield % 

no Fe3O4 40 40 

3000 39 40 

1000 42 41 

681 61 55 

342 60 54 

50 67 62 

20 88 87 

10 85 83 

5 87 91 

 

It was observed that the inter-particle interactions 

play a key role in the magnetic properties of 

PANI/Fe3O4 nanocomposites. The products exhibited a 

superparamagnetic behaviour at room temperature, 

whereas at low temperature they were in a blocked 

state, characterized by remanence and coercivity. Such 

a transition occurred between 100 and 200 K 

depending on the magnetite content. Moreover, their 

conductivity was similar to the traditional emeraldine 

salt one. 

CONCLUSIONS 

We have presented innovative sustainable ways for 

the preparation of conductive polyaniline and 

polypyrrole, using H2O2 or molecular oxygen as the 

oxidizing agents in the presence of different types of 

catalysts: gold nanoparticles, metallic copper, copper 

salts and Fe3O4 nanoparticels. 

These catalytic approaches are a promising sign of 

a viable eco-friendly route towards these conductive 

polymers, essential feature that cannot be disregarded 

both for fulfilling the environmental restrictions and 

innovative applications. 
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