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Abstract: The defining parameters of neuroecology stand to benefit from a phenomenological expansion that includes 
the role of affect qua interoception as entailing a multimodal storehouse for specialized signal processing and brain 
architecture within the neurovisceral axis. The relationship between the gut and the brain represents an integral axis of 
communication drawing from the ecosystem of the microbiome as an environment for nerve-cell processes reflecting our 
habits of living and the influence of the luminal environment in higher-ordered cognition. This is shown to apply in both 
feedforward and inferential models of interoception. A surplus of evidence in recent years indicates that interoception 
and interoceptive awareness play a key role in influencing adaptive behavioral strategies, cognition, homeostatic 
regulation, decision-making, social relations and action. The groundwork for this expansion has already been positioned 
by preliminary efforts to offer a physiological basis for computational neuroecology and emotion qua somatic markers. 
Building off of their maiden report, this paper develops the richer neuroscientific landscape underwriting somatic markers 
in the context of the neurovisceral axis qua interoception and biological intuition. In the process we encounter an 
evolutionarily-rare and morphologically-specialized type of neuron conjectured to provide an advantage for social 
processing that eclipses the rudimentary notion of somatic markers, alone, and thereby enriches the descriptive 
landscape of neuroecological phenomena. Finally, we examine the inherent signal processing dynamics in cortical 
laminar layers as rendered in a newly-fashioned predictive coding account of interoception as a “limbic workspace 
theory” that interfaces with sensory signals between agranular and granular cells. Advances in predictive coding models 
and the free-energy principle stand poised to provide a unified model of neural signal processing encompassing sensory 
coding as well as adaptation in neurons, mood and behavior.The incorporation of interoceptive inference sheds critical 
light on anticipatory (feedback) signal-processing mechanisms in the brain. This suggests that an incorporation of 
interoceptive affect-in combination with cognition and adaptation-will shed critical light on further efforts to organize the 
driving epistemic structure and phenomenology associated with neuroecology.  
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1. INTRODUCTION 

As the study of adaptive variation in cognition and 
the brain, neuroecology represents a burgeoning 
interdisciplinary niche combining anatomical and 
systems neuroscience with neuroethology (brain 
translations of biological stimuli into natural behavior), 
neuromorphology (the structure of the nervous 
system), behavioral ecology, and evolutionary biology 
[1]. What appears missing, however, is a corollary 
consideration for the influence of specialized affective 
processing on cognition, behavior and evolutionary 
adaptation. The groundwork for this has already been 
positioned by the preliminary efforts of [2] in offering a 
physiological basis for computational neuroecology and 
emotion qua "somatic markers"[3-5].  

Damasio’s ‘somatic marker hypothesis’ proposes 
that core (primary) consciousness arises via  
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non-verbal representations of how an organism’s 
internal state is affected by the perception of an 
external object, where this representational 
process helps to place the perceived object in a 
salient spatiotemporal context [23]. Damasio’s 
framework includes an ‘as-if body loop’ which 
involves simulation of interoceptive data, 
providing a connection to the predictive self-
modelling concepts. [Seth, 2009] 

Building off their maiden report [2], this paper 
develops the richer landscape underwriting somatic 
markers in the neurovisceral axis qua interoception [6-
9] and biological intuition.  

We agree with the basic premise of [2] that 
“communicated somatic markers can correspond to 
individual benefits” [2] however, find it necessary to 
develop somatic markers in the capacity of 
interoception and the neurovisceral axis, as an 
evolutionarily specialized and adapted pathway, 
operating in a regulatory capacity alongside Bayesian 
computational dynamics. When taken together we are 
able to account in full for the neuroecological criteria 
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outlined in this edition. Applying current 
neuroanatomical and predictive coding models of 
interoception to somatic markers, we are able to 
develop a more rigorous portrait of the neuroscientific 
parameters entailing neuroecology and its close links 
with integrative neuroscience in terms of cognition and 
the neural circuits that govern behavior. 

The conceptual foundation of neuroethology rests 
on the notion that nervous systems are embodied [10]. 
Significantly, James and Lange develop emotion 
precisely as an embodied element of the internal milieu 
predicated on homeostasis. This has since been 
applied to designate the biological foundation for 
interoception and emotion [6-9]. This line of reasoning 
is also consistent with recent embodiment views of 
cognition [37-39] suggesting that affective states are 
incorporated into the conceptual knowledge we use to 
categorize objects and events in the world [33]. As 
embodied and socially responsive, interoception 
provides a basis for the emergence of adaptive 
behavior from the coupling of brain, body and 
environment [1]. This presupposes the active 
integration of sensory signals motivated from prior 
action repertoires as a basis for perception 
underwriting adaptive behavior. We set this preliminary 
stage to secure the motivation for including 
interoception within the horizon of neuroecology.  

Comparative neuroanatomical blueprints of brain-
gut exchange provide clues that natural selection 
worked in favor of the development of a specialized 
pathway in higher primates for the purpose of 
facilitating a rich social complexity of information qua 
interoceptive and affective, communicative axes [see 8, 
9]. In the process, we encounter an evolutionarily-
specialized morphological type of neuron: the von 
Economo neuron—found in the cortical area of the 
intéroceptive axis-and geared towards the fast 
integration and diffuse transmission of simple signals 
throughout the brain [11, 12]. This is conjectured to 
provide an advantage for social processing that 
functionally eclipses the rudimentary notion of somatic 
markers, thereby enriching the neuroecological 
landscape. Specifically, von Economo neurons are 
found precisely in the interoceptive cortices at the top 
of the afferent, neurovisceral axis and are also 
implicated in the role of intuitive, social decision-
making, just like somatic markers.  

In what follows, we turn our attention to detailing the 
major elements of interoception as coincide with the 
driving challenge of this special edition: namely, to 

uncover causal relations between brain architecture 
and signal dynamics with behavioral strategies 
subsumed in cognition and adaptation. We begin by 
advocating for the role of cognition in contiguity with 
affect and emotion, and suggest this takes place most 
prominently within interoception. In detailing this 
modality, we uncover specific neurovisceral and 
cortical laminar architectures [9, 13, 14], along with 
corresponding signal processing dynamics in the 
insula, shown to causally-confer behavioral influences 
on the order of cognition, affect, emotion, decision-
making, attention, action and motivation.  

After substantiating this appeal, we turn to 
approximate models of “Bayesian brain” dynamics in 
top-down inferential procedures qua active inference 
[15, 16], predictive coding [17-19] and the minimization 
of variational free energy[20]. These provide intuitive, 
computational signal-processing mechanisms for 
ongoing behavioral adaptations underwriting action, 
perception, cognition and affect. Finally, we examine 
the proposal of inherent signal processing dynamics in 
cortical laminar layers, as rendered in [13, 14], by a 
top-down predictive coding account interfacing with 
bottom-up sensory interoceptive afferent signals 
between agranular and granular cells. Combining these 
accounts orchestrates an updated foundation for the 
neuroecological landscape centering on interoception.  

Antonio Damasio eloquently proposed the notion of 
somatic markers as arising from the association of 
emotional and affective (feeling) states with visceral 
and other body responses to certain situations [4]. 
Underwriting this proposal is the idea that affective 
reactions can guide future planning and expedite 
decision making [3]. For example, somatic markers 
may elicit the “undeliberated inhibition of a response 
learned previously ... [or] the introduction of a bias in 
the selection of an aversive or appetitive mode of 
behavior” [9; see also 3, 4]. The evolutionary 
advantage of simplifying decision-making based on 
past repertoires of action and contextual behavior 
provides clear fitness in a social setting.  

The relationship between the gut and the brain 
represents an integral axis of communication drawing 
from the ecosystem of the microbiome--as an 
environment for nerve-cell processes reflecting our 
habits of living, plus the influence of the luminal 
environment in higher-ordered cognition--as 
communicated through packets of feelings from the 
body: so-called somatic markers. Developing the 
enhanced, affective panorama of neural architecture 
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and signaling dynamics underwriting somatic markers 
allows us to mature the neuroecological discourse set 
forth in [2], and in the process, broaden the parameters 
to include interoception as a faculty critical to cognitive 
and adaptive neural processing.  

2. COGNITION & AFFECT 

“Psychoanalysts since Freud have known that 
emotions affect cognitions without the person being 
aware of the mechanism” [21]. 

The contribution of neuroecology to psychology and 
neuroscience can be traced through the insight it 
provides on the influence of selective pressures on the 
evolution of cognition and brain structure across 
genotypes and within phenotypes.  

Increasing evidence suggests that cognition and 
affect operate in contiguity. Linked to theory of mind 
[22]; social cognition [23-25]; empathy [26, 27]; emotion 
[19]; body ownership and sense of self [19, 28], 
interoception provides a multi-modal platform and 
behavioral interface for adaptation that leverages both 
affect and cognition. The integrative role between 
cognitive, sensorimotor, social-emotional and olfacto-
gustatory systems has moreover been hypothesized in 
numerous other studies analyzing links between 
sensation, affect and cognition [29; see also 6, 30-32]. 
Recently, Chanes and Barrett suggest that “in every 
conscious moment, all modalities are represented, but 
the type of content that is prioritized may determine 
whether we categorize the experience as emotion, 
perception, or cognition”[14]. Additionally, Duncan and 
Barrett [33] propose that affect proceeds more like a 
cognitive faculty with the difference being phenomenal 
rather than ontological. Thus, echoing [14], there is no 
such thing as a “non-affective thought.”  

This motivates the notion of an adaptive basis for 
cognition and affect based on an enactivist, embedded 
approach [34, 35]. Enactivist theories of perception 
represent cognition as arising from the dynamical 
interactions between an organism and its environment 
[36], making it well-suited to neuroecological needs.  

3. INTEROCEPTION 

From an evolutionary and adaptive perspective, 
interoceptive awareness evolved from the afferent limb 
of the evolutionarily ancient, hierarchical homeostatic 
system that maintains the integrity of the body’s 
internal operating systems [7], in order to leverage the 
physiological milieu of the body that guides elements of 

cognition and adaptive decision-making, as well as 
affect and behavior.  

Originally entailing only visceral sensations arising 
from the inner organs, interoception represents the 
ability to sense our interior physiological conditions [6, 
7] within an active monitoring of the body [41]. This is 
accomplished by detecting small changes in the coding 
and perception of body-tissue physiology including: 
muscles, skin, joints, and viscera [42]. As Herbert et al. 
explain, these “bodily sensations are intrinsically tied to 
life, represent relevant signals for survival and well-
being, and underlie mood, emotional state, and 
fundamental cognitive processes” [40]. Comparative 
neuroanatomy reveals that hominoids have developed 
a distinct cortical image of homeostatic afferent activity 
reflecting each aspect of the physiological condition of 
all tissues of the body [7].  

Visceral information proves especially important to 
the physiological regulation of the whole organism, as 
well as in providing a component of behavioral 
regulation (qua ingestion of food, cardiac autonomic 
balance, emotional parameters, differential endocrine 
allostatic responses) and emotional awareness [4, 43-
45]. The ability of visceral afferent information to reach 
awareness and affect behavior represents a hallmark 
of bottom-up interoception models, pointing to a 
constant mixing of body-relevant signals with external 
stimuli to influence motivated behavior [6-9].  

This activity is built up through the innervated 
differential activity of thin-diameter (Aδ and C) primary 
afferent fibers ascending the neurovisceral axis to a 
primary target in the posterior insular cortex (PIC). This 
specifies a ubiquitous information channel [46] actively 
representing the ever-changing milieu of physiological 
conditions of the body [6]. In humans, these body 
representations are then re-mapped from PIC into the 
mesial insula (MIC) where they are integrated with 
emotional, cognitive, and motivational information from 
a network of corollary brain regions [48] before final 
expression in AIC. This remapping of interoceptive 
signals in AIC has been proposed to underpin a 
primary form of self-awareness that also participates 
the distinction between ‘self’ and ‘other’ required for 
intuitive social interactions [19, 28, 49].  

As such, interoceptive awareness represents the 
end-product of an integration process entailing 
autonomic, visceral, and immunological (neurocrine 
and endocrine) signals that collectively situate how we 
perceive a transient sense for the physiological 
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conditions and differential microbial levels of the body 
underwriting mood, emotions [see 14, 29, 43], sense of 
well‐being [35], influence on social cognition [4], 
decision making [36], and intuition [5]-which in 
ensemble can be taken as representation of “the 
material me” [7, 50]. This capacity allows for the 
adaptive ability to respond intuitively to social signals 
and patterns, as well as providing a rich landscape for 
empathic interfacing and comparative inference 
underwriting theory of mind and the principle of affect 
sampling.  

4. TWO CAUSAL MODELS FOR INTEROCEPTION: 
FEEDFORWARD & FEEDBACK 

Stemming out of the maintenance of optimal, 
internal survival parameters in the body, converging 
evidence indicates two models for interoceptive 
awareness: a conventional, bottom-up approach in 
functional neuroanatomy of the neurovisceral axis [6, 7, 
9, 54, 55], and a recently developed top-down model a 
la the ‘Bayesian brain’ axioms [20, 51-53] and 
predictive coding [50, 56, 57-60].  

Where bottom-up approaches explain perception in 
terms of classical, feed-forward feature detection, top-
down approaches operate on the basis of inferential, 
generative (feedback) models [15, 61]. Within these 
two standards we identify characteristic neural and 
cortical architectures enabling specific communicative 
capabilities and processes. In addition, we encounter 
specialized signal processing pathways and operations 
tailored to interoceptive awareness, emotion, adaptive 
intuition and cognition.  

In the feed forward model, this entails the 
neurovisceral axis and insular processing dynamics, 
plus the von Economo neurons, whereas the feedback 
model includes the Bayesian brain hypothesis 
comprising predictive coding, active inference and the 
free-energy principle. Both models propose that the 
action center of processing takes place in the insular 
cortex. We briefly review both these models and their 
key components.  

4.1. FEEDFORWARD (Bottom-Up) 

Interoceptive awareness in the bottom-up regime 
models internal activity through an evolutionarily-
specialized afferent signal pathway in the neurovisceral 
axis projecting to the posterior insula (PIC) for further 
processing and rendering into subjectivized states, 
transmitted moment-to-moment via ‘drops’ [62] of affect 
finally contextualized in the anterior insula. This 

includes the role of VENs that project values and can 
advance predictions rapidly via intrinsic morphological 
adaptation and functional capacity. 

4.1.1. The Neurovisceral Axis 

The neurovisceral axis represents a bottom-up, 
sensory-driven operation built on the neuroanatomy of 
ascending, homeostatic lamina I (spinal and vagal) 
pathways leveraging primary afferent (A and C) fibers 
to bring interoceptive sensations to the brain [9].  

The neuroanatomical architecture and 
corresponding signal dynamics of the neurovisceral 
axis represents an “unparalleled relationship” [9] of 
multi-scale, reflexively communicating (afferent and 
efferent) interoceptive circuits between the microbial 
ecosystem of the enteric nervous system and 
gastrointestinal tract, with the higher cortices of the 
central nervous system. These internal, physiological 
circuits operate in a supervisory capacity through which 
viscerosensory afferents are transmitted up to the 
brain, “allowing the organism to homeostatically 
regulate its internal state and giving rise to awareness 
of bodily feelings like pain, touch and temperature” [63] 
required for preserving healthy internal conditions [64].  

Primary afferent fibers ascend two pathways, spinal 
and vagal, to the posterior insular cortex where these 
signals undergo a multimodal integration of information 
following a posterior to anterior gradient [8] that 
transforms them into moment-to-moment affective 
reports in the AIC. These states, representing somatic 
markers, provide a basis for decision-making as well as 
an influence on behavior, cognition and attention-plus a 
direct influence on low-level affective, adrenal and 
physiological activity [65].  

The brain-gut axis is responsible for maintaining the 
balance and regulation of body systems in participation 
with the cerebral, autonomic, and enteric nervous 
systems-and for generating moment-to-moment 
interoceptive images of the internalmilieu (physiological 
homeostasis) of the human body [7-9, 66, 67], 
constantly relaying internal needs to subjective 
awareness [6, 68]. This phylogenetically new pathway 
conveys homeostatic afferent activity directly to 
thalamocortical levels in primates. In non-primates this 
pathway is rudimentary, if at all [7]; however, in all 
mammals, integrated homeostatic afferent information 
from the parabrachial nucleus reaches the anterior 
cingulate and insular cortices by way of the medial 
thalamic nuclei and the parvicellular ventropostero- 
medial nucleus of the thalamus [6, 7, 69-71]. This 
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allows us to recognize the evolution of interoceptive 
dynamics generally (in all mammals) as well as 
uniquely reflected in adaptations of the neurovisceral 
axis in primates and humans.As Mayer notes, “the 
engagement of circuits outside of the gut wall 
integrates interoceptive and exteroceptive information 
to optimize the homeostatic regulation of intestinal 
function” [9]. At the widest scale, owing to the fact that 
the rudiments of the enteric nervous system have been 
found throughout the animal kingdom, including in 
insects and snails [9], it is suggested that the ganglia 
that eventually formed the higher cortices throughout 
the animal kingdom originated in more-primitive, enteric 
circuits [75].  

To summarize, interoceptive signals result from 
changes in the viscera, muscles and skin. These 
signals ascend the neurovisceral axis via primary 
afferents in the lamina-1 pathway-plus vagal afferents 
in the nucleus tractus solitarius (NTS), parabrachial 
nucleus and the thalamus-before arriving to the 
(laminar) granular layer IV in the posterior insular 
cortex, where they are received as a raw distribution of 
signals and information, and collectively in some 
character tone, which is to take Damasio’s somatic 
markers as the raw and unprocessed “initial feeling” of 
a collection of primary afferent fibers. 

4.1.2. Interoceptive Insular Dynamics (Bottom-Up) 

Brain activity obtained in neuroimaging data during 
interoceptive and emotional awareness uniformly 
correlates with pronounced differential activation of the 
insula [8, 72-74, 76, 77, 87] and anterior cingulate 
cortex, where spinal and vagal (afferent) neurovisceral 
pathways culminate. Craig elaborates the identification 
of a meta-representation of interoceptive activity 
fostering the subjective sense of embodied emotional 
awareness in the right anterior insular cortex (rAIC) [6, 
88]. “The insula constitutes a functionally and 
cytoarchitectonically diverse region of cortex with 
subregions involved in gustatory and olfactory 
processing, somatosensation, interoception, motivation 
and the maintenance of homeostasis” [84; see also 6, 
9, 82, 85, 86]. The insula is unique in that it is situated 
at the interface of cognitive, homeostatic, affective and 
sensory systems of the human brain, providing a link 
between stimulus-driven processing and brain regions 
involved in monitoring the body’s internal milieu [78; 
see also 8, 79]. Differential insular activity has also 
been reported in processing attention to sensory stimuli 
like touch, and in distinguishing between awareness of 
one’s heartbeat to an external rhythm [67, 80]. 

Computationally, the insula can be regarded as a 
multimodal integration region for evaluating the 
emotional and motivational salience of certain stimuli, 
providing an interface between external information 
and internal motivational states [6, 9, 81-83]. In 
humans, the insula has reentrant connections with the 
frontal, parietal and temporal lobes; the cingulate 
gyrus; plus subcortical structures such as the 
amygdala, brainstem, thalamus and basal ganglia [89]. 
These connections serve as an anatomical foundation 
for the integration of autonomic, viscerosensory, 
visceromotor and limbic functions. 

Further, a posterior-to-anterior gradient in the 
insular cortex has been recognized in which physical 
features of interoception are processed in the posterior 
insula, followed by a subsequent integration of those 
(primaryafferent) signals with cognitive and 
motivational information in the middle insula [8, 72, 73], 
before a final re-representation of the 
interoceptive/affective moment in the anterior insula. It 
is here in the agranular, anterior insula where we also 
find the evolutionarily rare, von Economo neurons.  

4.1.3. Von Economo Neurons 

The development of the specialized neurovisceral 
pathway in the hominoid brain represents a response 
to selection pressures resulting in enhanced fitness 
qua social information processing [8, 9] and theory of 
mind. This specialization is anatomically evinced in the 
evolutionarily-adapted von Economo neurons (VENs): 
a rare morphological-type of neuron (found at the 
cerebral apex of the neurovisceral circuit) characterized 
by a large, fusiform soma tapering into a single, apical 
axon on one pole, and a single dendrite on the other 
[11]. Surprisingly, VENs appear in only three brain 
regions (the anterior insular cortex, anterior cingulate 
cortex, and dorsolateral prefrontal cortex) of a select 
handful of species (humans; African and Asian great 
apes; pachyderms and select cetaceans) [90-93]. Each 
brain region in which VENs are found is integral to a 
host of functions that render higher-executive, social, 
emotional, and episodic dispositional capacities, 
placing them securely within a neuroecological 
characterization. 

Over a few months in 2009, I successfully recruited 
to my (original) dissertation committee, the CalTech 
neuroanatomist (and leading researcher associated 
with VENs): John Allman. During this time we would 
meet to hike together up Mt. Baldy, in Southern 
California, along with his two dogs: Luna and Lunita, 
while discussing these neurons and their role in 
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interoception; their peculiar correlation of high (post 
mortem) cell-counts with old age and longevity; and to 
consider novel techniques for indirect, in vivo cell-
counting approximations--while hiking up to a large tree 
where we would sit to have lunch and talk more. 

Indeed, the large axonal size of VENs, plus the 
morphological simplicity of their dendritic architecture, 
suggests a specialization for the rapid transmission of 
information over long distances throughout the brain 
[11, 12, 94, 95]. This also suggests a role in processing 
information across sensory modalities in a distributed 
neural network [11]. As such, VENs are tailored to 
swiftly render complex and highly-integrated 
(multimodal) information into a compressed, simple 
signal sent diffusely throughout the brain for immediate 
awareness and cognitive appraisal strategy in 
response to affective signaling. We consider regarding 
these ‘simple’ signals qua Damasio’s somatic markers 
[3, 66]. In addition, VENs express dopamine, serotonin 
and vasopressin receptors [12, 96], all of which 
represent neurotransmitters involved in emotion 
regulation. Von Economo neurons in layer 5b of the 
anterior cingulate cortex (ACC) have also been shown 
to be particularly involved in the rapid transmission of 
signal processes pertaining to self-experience, social 
decision-making, empathy, intuition, and social bonding 
[158]. As Allman explains: 

Intuition is a form of cognition in which many 
variables are rapidly evaluated in parallel and 
compressed into a single dimension. This 
compression facilitates fast decision-making. 
Typically we are not aware of the logical steps or 
assumptions underlying this process although 
intuition is based on experience- dependent 
probabilistic models. Instead we experience the 
intuitive process viscerally. Intuition operates 
largely in the social domain but can also be 
applied to purely physical situations [as in 
physics]. Intuition is plastic; it is not instinct, 
although instinctive feelings may contribute to it. 
Emotional value judgments contribute to both 
intuition and deliberation. [12] 

During our discussions John made clear that while 
the morphological adaptation and associated chemical 
and wiring requirements of VENs suggest an adapted, 
functional role in the processing, compression and 
distribution of neurovisceral information-with many 
degrees of freedom-throughout the brain; still, a formal, 
functional physiology remains unrealized. Speculating 
to these ends, Damasio’s theory of somatic markers [3] 

proposes that the monitoring of sensations arising from 
the gut is crucial to adaptive decision-making. He 
suggests this provides a biological basis for gut 
feelings (biological intuition) qua higher-cognitive social 
instincts and complex decision-making [12] transmitted 
through somatic markers. Such an identification of 
somatic markers with VENs also links interoception and 
the neurovisceral axis, and thereby strongly 
encourages, at any rate, the motivation of [2] to 
implicate somatic markers within a computational 
account of neuroecology.  

4.2. Feedback (Top-Down) 

“The brain’s default mode of interacting with the 
world is via continuous, intrinsic predictive activity that 
is more-or-less constrained by sensations coming from 
the world and the body” [13]. 

Throughout the ages a handful of thinkers have 
maintained that perception involves the integrated 
admixture of pure sensation with unconscious 
inference. In earliest known roots, this dates back to 
Alhazen, Rev. Thomas Bayes, Herman von Helmholtz 
and Charles Sanders Peirce [97-100]. More recently, 
about thirty years ago Jaynes [101] used Bayesian 
probability to model mental processes. Over the last 
few decades the paradigm of bottom-up (accumulative, 
sensory-driven) neural processing has been 
augmented by rigorous computational work in top-down 
systems advancing the logic of spontaneous activity 
[102] a-la the default mode network; executive control 
network; resting-state activity; predictive coding [18, 19] 
and the free-energy principle [17, 103], predicated on 
Bayesian probabilistic operations.  

Whereas bottom-up processes are mostly stimulus-
driven, top-down processes are steered by value-
driven task demands. This comparison details a 
conjunction updating neurocognitive models to 
neuroecological ones [102], and advances the 
dichotomy of top-down and bottom-up processing from 
an either/or to a both / and logic. As Friston explains, 
“feedforward architectures on their own are not 
sufficient. […] Feedback connections mediating internal 
or generative models of how sensory inputs are caused 
are essential” [103]. Various other commentaries [e.g., 
104-107] also advocate for an interactive paradigm 
where the integration of top-down and bottom-up 
information proves crucial for identifying a general 
organizational principle of the brain [15, 16, 108, 113] 
and consciousness [109-112].  
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4.2.1. The Bayesian Brain, Predictive Coding & Free 
Energy Principle 

Theoretical and computational advances in the 
logical models underwriting neural processing stand 
poised to advance our understanding of the 
relationship between brain architecture and signal 
dynamics through the implementation of applied 
Bayesian brain axioms [20, 99, 113, 114, 115]. In the 
Bayesian brain hypothesis, the brain represents 
sensory information probabilistically-in the form of 
conditional probability distributions-where the 
probability for a hypothesis can be updated as more 
evidence/information accrues over experience. Key 
examples of functional models within top-down 
paradigms include predictive coding [116] and the free-
energy principle [17]. 

Predictive coding is predicated on the principle 
that “an organism should maintain well-adapted 
predictive models of its own physical body and of its 
internal physiological condition” [19]. The goal of 
predictive coding is to build models that maximize 
successful predictions and approach optimalitybyfine-
tuning predictions. As Bialek explains: 

The ability to make accurate predictions of future 
stimuli and the consequences of one’s actions 
are crucial for the maintenance of internal 
parameters that are key to endogenous survival, 
as well as to exogenous survival qua social 
navigation and efficient, appropriate decision-
making [117]. 

Taken as such, predictive coding provides an 
integrated model accounting for both top-down and 
bottom-up approaches to cognition and affect. Two 
principles spearhead the predictive coding programme; 
first, that the brain continuously generates models of 
the world through activity in the nervous system that 
reflects a process of fitting internally-generated 
predictions with external stimuli [118, 119]. The second 
principle states that predictions are transferred from 
hierarchically higher levels of laminar processing to 
lower ones, whereas signals traveling in the opposite 
direction encode prediction errors [120; see also: 116, 
121, 122].  

Within this functional architecture, top-down signals 
convey predictions and bottom-up signals convey 
prediction errors [18, 123, 124]. Top-down predictions 
involve expectations spanning multiple spatial and 
temporal scales [125]. This means that the brain 
anticipates the causes of incoming sensory signals in 

the form of predictions with the intent of generating 
increasingly more-optimized models about the sources 
of those signals. In a complementary sense, top-down, 
higher-level cortical processes try to predict, or “explain 
away” [126], the bottom-up sensory information 
conveyed by lower-level brain regions [20, 103]. This 
means that it is only the difference between the 
predicted and actual sensory inputs (prediction errors) 
that is communicated along the cortical hierarchy, back 
up to multimodal representations in agranular sensory 
(limbic) cortices [14]. Unexplained elements of the 
sensory signal are “pushed upward so as to select new 
top-down hypotheses that are better able to 
accommodate the present sensory signal” [125].  

In this sense, predictive coding constrains signals in 
an abductive procedure [100, 127] that down-regulates 
all predictable signals to leave only the surprises. This 
ensures constant adaptation in a neural and synaptic 
modeling capacity through the acquisition of new 
information about unfamiliar states (obtained through 
prediction-errors, anomalies, surprises) to update 
generative models and synaptic weights. Such model 
adjustment and fine-tuning through synaptic precision 
weighting and gain modulation supplies constant 
learning and adaptation to the system, striving towards 
optimality qua minimization of variational free-energy 
and optimization of allostatic responses [128] for the 
maintenance of survival parameters.  

Even though predictive coding models found initial 
success in application to vision, exteroception and 
proprioception, it seems the best application for 
Bayesian inference comes by virtue of its role in 
underwriting affective and emotional awareness in the 
interoceptive, neurovisceral axis [see e.g. 19, 128], 
where the goal of predictive processing is to maintain 
dynamic equilibrium within the body’s optimal internal 
parameters for survival through a minimization of 
surprises.  

Within interoceptive predictive coding, bottom-up 
prediction errors-comprising the signals of primary 
afferent fibers arriving in PIC-are largely constrained by 
top-down the predictions [19, 129]. Prediction error can 
be regarded as free energy such that minimizing 
variational free energy is effectively the same as 
minimizing prediction error [17, 103]. The goal of this 
process is to minimize the discrepancy between the 
brain’s prediction and incoming sensory signals 
(prediction errors); therefore, in order to maximize 
survival, organisms must avoid surprising states.  
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The free-energy principle [17, 18] states that any 
self-organizing system maintaining equilibrium with its 
environment must also minimize its free energy [17]. 
This implicates every aspect of the brain, from neural 
activity to synaptic connection strengths, as a process 
that minimizes variational free energy [130]. Where 
variational free energy measures the probability of 
sensory inputs based on the brain’s model of how 
those inputs were caused [130]. This framework 
assumes that “the brain uses internal hierarchical 
models to predict its sensory input and suggests that 
neural activity (and synaptic connections) try to 
minimize the ensuing prediction-error, or Helmholtz 
free-energy” [131]. This represents a mathematical 
formulation of how adaptive systems resist a natural 
tendency to disorder [see 132-136]. Free energy 
(surprise) can be suppressed by a) changing sensory 
input, b) acting on external states, or c) by modifying 
internal states through perception [130; see also 16, 
17] and allostasis [128].  

Appliedto interoception, the minimization of 
variational free-energyis predicated on Bayesian 
probabilistic operations entailing an inferential, 
predictive-coding scheme that constantly adapts 
aspects of its model of the system to best reflect the 
causes of incoming (feedforward) sensory inputs from 
the neurovisceral axis [130]. This corresponds to the 
maintenance of essential biological variables-like blood 
pressure and heart rate-within optimal parameters [56]. 
Within this construct, we leverage a computational 
appeal to the free-energy principle qua minimization 
of variational free energy (variational Bayes, or 
ensemble learning) [20, 130] to motivate a case for 
enabling perpetual neural adaptation. This suggests 
that “the brain's architecture constructs a vast 
repertoire of functional states as a generative model of 
the world […] shaped by the organism's history and 
tailored to its allostatic needs and motivational goals” 
[14].  

These principles incorporate the cost of obtaining 
information as well as the cost of making complex 
decisions [137, 138]; therefore, validating such theories 
could help establish frameworks to compare behavior 
not only in different species and tasks, but also at 
multiple scales from: single cells [139], neurons and 
intracellular pathways, to emergent phenomena at the 
population level, such as the distribution of blood flow 
in the brain that anticipates future stimuli [140]. Under 
this model, adaptive changes in neural representation 
can be viewed as a predictive computation about the 
properties of stimuli to be received in the near future. 

By properly allocating neural responses through 
mechanisms such as adjusting the neural gain in single 
neurons [141, 142] or the distribution of the preferred 
stimulus values for different neurons [143-145], 
neurons can more accurately encode future stimuli in 
order to provide more reliable information.  

The top-down computational feedback procedure 
can be applied to interoceptive signal-processing 
dynamics such that bottom-up signals represent the 
contents being predicted by the active, top-down 
mechanism. In this way, interoceptive predictions 
indicate a pattern of activity that represents the 
expected interoceptive sensations. Interoceptive 
perception is largely a construct of adaptive beliefs and 
models kept in check by the actual state of the body. 
“Percepts emerge via a recurrent cascade of top-down 
predictions that involve expectations spanning multiple 
spatial and temporal scales” [125]. The associated 
neural processing for interoceptive perception is linked 
to the differential activation of a) anterior insula and 
visceromotor signals to the hypothalamus and 
brainstem; b) sends indirectly via subgenual ACC; and 
c) indirectly through multimodal integration network in 
MIC and primary somatosensory area (S1). As de-Wit 
explains:  

Inferences about the sensory consequences of 
homeostatic budgeting are implemented as 
upcoming visceromotor commands constrained 
by error signals resulting from the failure of 
previous predictions to accurately account for 
incoming interoceptive sensations. [146] 

This ensures homeostasis both directly via 
autonomic regulation and indirectly by shaping actions 
through influences on decision-making [56]. As such, 
interoceptive inference contributes to physiological 
homeostasis by influencing value-based decision-
making. This neatly places the somatic marker 
hypothesis within an embodied predictive coding 
context [128]. As Gu (et al) explain: 

The joint involvement of AIC and SI in integrating 
top-down and bottom-up information suggests that a 
possible “somatic marker” signal (Damasio, 1996) is 
activated when the processing of affective visual stimuli 
is guided by certain top-down requirements. Such 
signal might be subsequently conveyed to control 
regions such as ACC and prefrontal cortex for 
appropriate behavioral output. [57] 

For instance, Craig proposes “a parallel 
specialization of ACC for the support and facilitation of 
motivational behavior, where ACC receives 
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interoceptive information via an ancillary medial lamina 
1 pathway” [7,67]. 

4.2.2. Interoceptive Insular Dynamics (Top-Down) 

Seth and Critchley [50] propose that the AIC also 
represents the convergence zone between top-down 
and bottom-up processing where a predictive coding 
procedure actively minimizes surprise by leveraging the 
free-energy principle to elicit a constraining effect within 
interoceptive awareness. As such, interceptive 
awareness is largely attributed to the constraining 
element of predictive coding on incoming 
(neurovisceral) signals, such that only anomalies are 
made salient for awareness and attention. In this way, 
feedback signaling reflects an “explaining-away” [126] 
of values in order to render only those that remain 
unexplained: the anomalies, surprises, or prediction 
errors. To these ends, the goal of predictive coding is 
for the brain to abductively [147] infer the causes of 
interoceptive sensations in a Bayesian capacity qua 
‘inference to the best approximation’ [127]. Here, the 
insula processes current feeling states linked to 
interoception, predicted feeling states, prediction error 
and cognitive evaluation of risk and uncertainty [74], 
allowing for an evaluation and adaption of the 
prediction.  

The joint involvement of AIC and SI in integrating 
top-down and bottom-up information suggests 
that a possible “somatic marker” signal [3] is 
activated when the processing of affective visual 
stimuli is guided by certain top-down 
requirements. Such signal might be 
subsequently conveyed to control regions such 
as ACC and prefrontal cortex for appropriate 
behavioral output. 

When taken together, the top-down and bottom-up 
models of interoception suggest a two-way causal 
convergence of signals proposed to meet in the AIC, 
where bottom-up interoceptive signals are inferentially 
assessed against top-down predictions based on 
expectation values within homeostatic parameters [7, 
19] and previous synaptic weighting encoded in 
combination with Edelman’s ‘perceptual categorization’ 
interfacing with the reentrant ‘value-category memory’ 
to abductively resolve outliers to predicted values for 
enhanced salience in the AIC/ACC salience network. 

4.2.3. Cortical Laminar Processing and the EPIC 
Model 

In response to early suggestions that the AIC was 
solely responsible for intéroceptive predictive coding, 

Barrett and Simmons [13] consider that such an 
important procedure wouldn’t be left to only one region 
of the brain, and instead represents a paradigm 
example of a larger dynamic exhibited in cortico-
cortical and limbic cellular processing. Tracing the free-
energy principle and predictive coding through current 
theoretical and computational channels, they clarify 
notion of a causal relationship between corticocortical 
connections interfacing in the laminar layers of the 
brain [13] to provide a neural basis for the incipient 
processing underwriting interoception, perception, 
behavior and action. This includes the role of adaptive 
models leading to cognitive and behavioral strategies 
informing allostatic responses and adaptive model 
refining. To these ends, Barrett and Simmons develop 
the “EPIC” model (embodied predictive interoceptive 
coding) to provide “a systematic variation of laminar 
structure of the cortex that integrates a structural theory 
of corticocortical connections with the principle of 
predictive coding to propose an interoceptive system in 
the brain” [13]. 

Both the insular processing and EPIC models of 
interoceptive predictive coding ensure significant outlier 
signals are made salient in attentional awareness for 
appraisal and allostatic response. In the bottom-up 
approach, this information is made salient through dual 
activation of the AIC and ACC (salience network). 
Alternatively, in the predictive coding [19, 103] and 
EPIC [13] models, salience comes from the differential 
gain adjustment of superficial agranular signals onto 
deep-layered, granular cells (interoceptive signals, 
prediction errors) based on generative models. 

Within the insula, we consider the nuances of a 
tripartite cytological organization and multimodal 
information processing dynamics. The insula can be 
subdivided into a posterior, medial and anterior region 
corresponding with granular, dysgranular and agranular 
cell-types, respectively.  

Chanes and Barrett [14] claim that the insular 
gradient dynamics of interoceptive information 
processing could generalize to all corticocortical 
processing. Specifically, they model limbic cortices at 
the highest layer of processing in the cortex, projecting 
predictions from less-laminated, agranular cortical 
regions onto superficial layers of highly-granulated (and 
laminated) cortices [14]. This updates agranular limbic 
cortices-like the AIC-such that they are no longer 
simply reacting to stimuli from the world, but are 
actually anticipating it. For instance, den Ouden 
gathers evidence supporting the putamen as a gating 
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mechanism between motor procedures and sensory 
expectations based on predictive and efficient coding in 
brain [148].  

Together, this identifies an alternative to classical 
notions of perception as simply a bottom-up enterprise 
of evidence accumulation and feature detection, 
suggesting instead that interoceptive awareness of 
perceptual content also results from descending limbic 
predictions contextualized from hierarchically-
organized generative models reflecting the expected 
state of sensory signals from the body and constrained 
against ascending interoceptive sensations [19].  

CONCLUSION 

Précis 

The purpose of the present edition is to develop 
neuroecology in the capacity of a causal relationship 
between brain architecture and corresponding signal 
dynamics with distinct behavioral strategies subsumed 
under cognition and adaptation. We consider that 
cognition and adaptation alone, however, are not 
enough to provide a sufficient basis for neuroecology 
without also including the important role ofaffect on 
behavior. By revising the definitional parameters of 
neuroecology to include affect qua interoception and 
the neurovisceral axis, we provide a more rigorous and 
intuitive foundation for future experimental approaches 
and conceptual foundations.  

Building off the preliminary groundwork established 
in [2] for a computational neuroecology of somatic 
markers provides the necessary platform for this 
present work; however, it also leaves much to be 
developed. Specifically, it becomes essential to 
elaborate somatic markers within the neuroanatomical 
and cellular context of interoception and the 
neurovisceral axis. This article identifies feedforward 
(bottom-up) and feedback (top-down) models of 
interoceptive processing in the corollary context of the 
neurovisceral axis, homeostasis, intuition (as gut-
feelings), von Economo neurons, predictive coding, the 
free-energy principle and precision weighting.  

Feedforward interoceptive signaling confers the 
existence of a common phylogenetic platform exhibiting 
evolutionarily-specialized and adaptive mechanisms in 
the human and in primates. This includes a biological 
basis for ‘gut intuition’ as well as enhanced affective 
awareness pathways of internal states of the body 
through the thalamus. This operates on the implicit 
ontological claim that “perception follows sensation and 

therefore bodily feelings originate in the body” [13]. 
However, such a line of reasoning has led to 
subsequently incomplete theories of interoceptive 
awareness when weighed against evidence for 
predictive modulation predicated on top-down 
approximations of Bayesian inferential modeling.  

In the feedback approach, affect, qua subjective 
feeling states of emotion, is seen as the result of 
interoceptive predictive coding arising from “actively-
inferred, generative models on the causes of 
interoceptive afferents” [19]. Here, interceptive 
awareness is computationally attributed to the 
constraining element of predictive coding on incoming 
(neurovisceral) signals, such that only anomalies are 
made salient for awareness and attention. In addition to 
embodiment theories, this approach also generalizes 
‘appraisal’ theories [149, 150] that consider emotions 
as emerging from cognitive evaluations of physiological 
changes. The fact that interoception and the brain-gut 
axis are predicated on homeostasis (qua balance and 
maintenance of optimal survival parameters) 
demonstrates a solid link to adaptive and regulatory 
systems within the body in terms of modeling the 
internal milieu. This follows the idea from Ashby that 
“every good regulator of a system must also be a 
model of that system” [151].  

From a top-down perspective, generative models of 
a system are adaptively appealing given their constant 
optimization of expectations and predictions in 
response to new, incoming data. The mechanism in 
which they realize this optimization is through the 
minimization of (variational) free energy in conjunction 
with a fine-tuning of synaptic and precision weighting 
and gain modulation of lower sensory neurons in 
cortical laminar layer processing. This secures a 
constant adaptation in the organism aimed at 
optimization [20] within modeling and predictions about 
the external world, including influences on our internal 
worlds (physiology, cognition). This suggests an 
ecological principle at work in top-down processing to 
the extent that expectations can exert an influence on 
perception and the processing of bottom-up stimuli. 

The neurovisceral axis enables a modelling of 
intuitive decision making based on the representation 
of affective, somatic markers [152] predicated on gut 
responses working in concert with the evolutionarily 
rare and morphologically specialized von Economo 
neurons (VENs), found only in species with a highly 
complex social structure and sense of self - and most 
pronounced by far in the human brain [12, 153]. Also of 
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note, in a top-down capacity Friston [154] provisionally 
implicates VENs in a ‘privileged’ role for sending 
advanced predictions from the insula to the amygdala 
and hypothalamus [see also 155]. 

In another sense, the parameters of neuroecology 
are closely related to “integrative neuroscience,” where 
both epitomize top-down and bottom-up 
phenomenological models as well as theoretical and 
philosophical foundations for explicit hierarchical and 
functional integration in the brain [156]. In addition, 
integrative neuroscience provides an express focus on 
the brain as an adaptive system [157], focusing on the 
functional organization of brain systems across 
hierarchical levels leading to species-typical behaviors 
[156]. We propose developing this connection further in 
the future. 

Closing Remarks 

The goal of this special edition is to “uncover the 
causal relations between brain architecture and signal 
dynamics with behavioral strategies subsumed in 
cognition and adaptation.” This paper provides 
substantive support for an expansion of the defining 
parameters of neuroecology to include an affective 
processing dimension-qua interoception-as an 
essential and complimentary basis to accompany 
cognitive and adaptive components. To wit, 
interoception provides a paradigmatic modality 
precisely combining neural and cortical brain 
architecture and signal dynamics within underwriting 
cognitive and adaptive behavioral strategies such as 
decision-making, problem solving, cognition; memory, 
recall and computation. These behavioral strategies 
are causally related to the brain architecture and signal 
dynamics in computational and predictive top-down 
models, and in neuroanatomical and physiological 
bottom-up models. The common denominator of these 
relationships can be harnessed within the multimodal 
context of interoception. 

Predicated on homeostasis, adaptation, perception 
and cognition, interoception, as the sense of the 
internal physiological condition of the body, provides a 
secure basis for contextualizing all of the criteria 
outlined in the main challenge of this special journal 
issue. It underwrites the moment-to-moment 
experience that includes constituents perceived: 
cognitively, affectively, motivationally, in awareness, 
attention, salience and learning-as well as from the 
special faculties of intuition, insight and situational-
instinct, all made available through a biological-

leveraging of pathways in the bottom-up, neurovisceral 
axis, whose functional architecture enables enhanced 
representation of active information. Homeostasis is 
taken as a key organizing principle of neuroecology.  

In the bottom-up model, the development of this 
specialized pathway in hominoid neurovisceral 
architecture indicates a response to selection 
pressures resulting in enhanced fitness qua social 
information processing [8, 9], cooperationand empathy. 
Functionally, the brain and gut are in almost-constant 
communication, sending various neurocrine and 
endocrine signals back and forth to such an extent that 
they participate in an overall, neurovisceral axis whose 
end-products are raised into awareness through the 
specialized sensory-modality of interoception with 
attributes of salience, affect and intuition. 

Specifically, the gut-brain axis generates moment-
to-moment interoceptive maps of the internal milieu 
(interior condition) of the human body [7-9, 67, 152]. In 
humans, a meta-representation of this interoceptive 
activity is represented in the right anterior insula, 
providing a subjective image of the emotionally aware, 
material self [8, 9, 19]. This meta-representation of 
interoceptive activity emerges from the dynamics of this 
hierarchical, reflexive (neurovisceral) axis with 
integrated networks of circuitry responsible for 
maintaining the homeostatic balance of body systems 
in participation with cerebral, autonomic, and enteric 
nervous systems. As such, the neurovisceral 
communication axis renders interoception and gut-
feelings against the backdrop of homeostasis, as one 
of the essential organizing principles of body systems.  

As such, interoceptive affect is the result of value-
deviations from homeostasis recorded within ascending 
(spinal and vagal) afferent fibers projecting up to the 
insula, where they are rendered into feelings that 
characterize and accompany specific, momentary 
physiological distinctions in the body. Primary afferent 
fibers carry details about the internal, visceral states 
associated with differential activity and responses in 
body physiology (to sensory and external inputs) 
across the range of the neurovisceral axis and 
experientially-contextualizing in the special sense-
capacities of interoception and intuition (gut-feelings) 
operating alongside top-down motivated conditioning 
on perception and expectation-values. As Buldeo 
explains, “afferent information traveling from the body 
to the central nervous system enables the body to 
holistically control or maintain this homeostatic milieu 
interieur” [63]. The differential streaming effect and 
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contents of these affective feelings translate into our 
experience of emotions. This is known as the 
‘homeostatic model of emotion’ [6]. This compliments 
one of the express goals of neuroecology to 
contextualize how natural selection acts on the neural 
mechanisms underwriting cognition and adaptation [1].  

We are further able to draw this out through the 
morphological adaptation of the evolutionarily- and 
functionally-specialized von Economo neurons and 
their proposed role in difficult problem-solving, social 
decision-making and intuition, plus sense of humor 
[12]. These evolutionarily-unique neurons-found only in 
the brains of a handful of species all sharing advanced 
social structures-add additional cytoarchitectonic and 
proteomic layers onto the picture of how moment-to-
moment affective and interoceptive multi-state 
dynamics are hypothesized to rapidly confer as packets 
of intuition transferred from the gut to the brain [91, 
153] as somatic markers of awareness in 
consciousness.  

Neuroecology adds an additional dimension to 
neuroethology insofar as establishing critical links 
between neural processes and “community-level 
consequences of individual behavior” [160]. In this 
sense, the rapid and complex processing of social 
information (tailored by morphology and laminar 
location of VENs) into simple signals might enable the 
facilitation of intuitive decision-making. Here, intuitive 
decision making is based on the interpretive appraisal 
of affective, ‘somatic markers’ predicated on gut 
responses working in concert with the neuro-
morphologically adapted VENs, to enable fast-paced 
decisions based on interoceptive stimuli [159] 
predicated in the ‘supercomputer’ of enteric 
computations-with many degrees of freedom more than 
in a cognitive capacity. 

In the top-down regime, applying the 
neuroanatomical predictive coding model of [13, 14] to 
interoception provides a compelling basis for 
expounding the provisional account of computational 
neuroecology qua somatic markers, as evinced in [2]. 
This suggests that the value deviations from 
predictions, when synthesized in AIC, represent the 
somatic markers that lead to differential activation of 
the salience network qua structure forms of contextual 
repertoires from past experiences. Within this model, 
the minimization of variational free energy (surprise) is 
considered more intuitive for physiological states than 
for environmental states; thus, interoceptive inference 

appears as a most natural expression of the Bayesian 
brain, even more than original formulations in 
exteroceptive contexts like vision [20, 56, 161]. 

The view that prediction and error-correction 
provide fundamental principles for understanding 
neural processing is gaining increasing traction within 
the cognitive and brain sciences. Predictive coding 
provides a constantly-adaptive, integrative, regulatory 
and corrective monitoring capacity on sensory and 
external signals.  

Interfacing top-down and bottom-up neurosignaling 
dynamics are considered to engage two levels of 
interoceptive processing: a) in the anterior insular 
cortex, as a multi-modal comparator region [6, 39] and 
synthesizing platform for interoceptive afferents arriving 
in the posterior insula from the neurovisceral axis [see 
9, 10]; and b) in the generalized intracortical 
(corticocortical processing) of the EPIC model [13] 
within the laminar architecture and corresponding 
signal dynamics [38] from agranular to granular 
cortices (less-laminated to highly-laminated layers) of 
the Limbic Workspace model of [14].  

This suggests that an incorporation of interoceptive 
affect-in combination with cognition and adaptation-will 
shed critical light on further efforts to organize the 
driving epistemic structure and phenomenology 
associated with neuroecology. Thus, through 
interoception we are drawn into acquaintance with our 
inner ecology.  
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