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Abstract: The vehicle routing problem is an important real-life transportation problem. We propose a two-phase 
construction heuristic for the solution of the classical Euclidean (uncapacitated) vehicle routing problem in which the 
minimum cost k  distinct vehicle tours are to be formed for the given n  customer locations. At the first phase we 
construct a polygon in the 2-dimensional Euclidean space that girds all the given points (customer locations and the 
depot). The second phase consists of two stages. At the first stage the interior polygon area is partitioned into k  triangle 
areas, and at the second stage the k  tours for each of these areas are constructed.  
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1. INTRODUCTION 

The Vehicle Routing Problems (VRP) arise in vast 
amount of practical circumstances when the goods are 
to be distributed to the customers using a limited 
number of vehicles. In general, the transportation 
problems form a significant part of practical real-life 
problems (see, for example, Rodrigue et al. [11]) 
formalized as mathematical combinatorial optimization 
problems. They are typically intractable, hence one 
often looks for some heuristic methods for their 
solution. 

One of the most practical and also complex 
combinatorial optimization problems is the Vehicle 
Routing Problem (proposed first by Dantzig and 
Ramser in early 1959). The basic (uncapacitated) 
version of this problem can be stated as follows. We 
are given an undirected weighted (complete) graph 
G = (V,E)  with edge weights we , for all e!E , a 
distinguished node vd  from set V  (called depot) and a 
positive integer number k . (i, j) !E  is the edge 
connecting node i  with node j . For any Y ! V  

containing node dv , a tour TY  defined by set Y  is a 
directed cycle that starts at that node, visits every node 
in Y  exactly once and returns to the same node vd ; in 
other words,  TY = (i1, i2 ,…, il ,1) , where  (i2 ,…,l )  is an 
enumeration of the nodes in set Y  not including node 
vd  and i1 = vd . The cost of tour TY , c(TY )  is the sum 
of the weights of the edges on this cycle, i.e., 

 c(TY ) = w(i1, i2 ) + w(i2 , i3 ) +…+ w(il ,1) . VRP aims to  
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find the partition of nodes from set V \ {vd }  into k  
subsets  V1,…,Vk  with the minimal possible total cost; 

that is, with the minimal 
 i=1,2,…,k! c(Vi ) . 

VRP is a generalization of a well-known Traveling 
Salesman’s Problem (TSP): VRP with k = 1  becomes 
TSP. Multiple TSP, a generalization of TSP with k -
tours, k -TSP, is a VRP with k  vehicles. 

We deal with geometric two-dimensional version of 
the problem when edge weights represent Euclidean 
distances between the nodes, considering the nodes 
themselves as points (cities or customers) in the two-
dimensional Euclidean space. The corresponding 
problem with already 1 vehicle, i.e., the corresponding 
1-TSP is already NP-hard Papadimitriou [10]. 
Therefore, we do not pretend to solve our VRP 
optimally but rather suggest an efficient heuristic for its 
solution. 

Giving a practical interpretation to VRP, assume we 
have k  identical distinct resources or vehicles (one for 
each of the subsets Vi ) that can travel in between the 
cities. The weight w(i, j)  is the distance between 
nodes i  and j . We aim to minimize the total travel 
distance (time) of all the vehicles. There are a number 
of extensions of VRP, the most common of which is the 
capacitated version in which every vehicle has a given 
capacity that cannot be exceeded during its tour. 

The vehicle routing problems have been extensively 
studied, the most of the solutions methods in the 
literature being heuristic (see, for example, Laporte and 
Semet [7], Gendreau et al. [4] and Mester and Braysy 
[9]). There are a few enumerative algorithms as well 
that work on small instances relatively good (see, for 
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example Lysgaard et al. [8] and Fukasawa et al. [3]). 
Here we do not pretend to cover all the enormous 
related work, we rather refer the interested reader to 
the book edited by Toth and Vigo [12], a newer 
overview book edited by Golden et al. [5], review 
papers by Christofides et al. [1], Laporte [6] and 
Cordeau et al. [2]. 

In this paper, we propose a two-phase construction 
heuristic for the the classical Euclidean (uncapacitated) 
version of the problem. At the first phase we construct 
a polygon in the 2-dimensional Euclidean space that 
girds all the given points (customer locations and the 
depot). The second phase consists of two stages. At 
the first stage the interior polygon area is partitioned 
into k  triangle areas, and at the second stage the k  
tours for each of these areas are constructed. 

To form the above partition of the interior polygon 
area, we determine auxiliary k  distinct border points on 
the polygon associating with them vectors directed 
from depot to each of these points in 2-dimensional 
Euclidean space. These k  vectors define the k  
triangle areas of the interior of the polygon. The tour 
corresponding to a given triangle area is formed 
somewhat “across” the vectors defining this area: the 
close-by region sorrowing these vectors is a “most 
dance” zone within that triangle area (in the sense that 
it contains “the most” of the nodes of the triangle area). 
The density is measured by a specially introduces 
density parameter. If all the formed in this way k  tours 
cover all the nodes, then our heuristic halts with the 
created solution. Otherwise, it updates the density 
parameter and adds more nodes to the current tours 
according to the new value of the density parameter. 
This procedure is repeated until all the nodes are 
included into the k  created tours. 

In the next section we describe our procedure for 
the construction of the polygon girding whole tour area. 
In Section 2 we describe the partitioning and routing 
phase, and in Section 3 we give a few final remarks. 

2. PHASE 1: THE CONSTRUCTION OF THE 
GIRDING POLYGON 

Without loss of generality and for the commodity, 
we assume that the given n  points from set V  have 
non-negative coordinates (otherwise, we can shift them 
uniformly without changing the distances between 
them). 

Our task at phase 1 is to determine a special kind of 
a (closed) convex polygon that contains all the nodes 
from set V  girding in this way the whole tour area. No 
node from set V  may be left outside the area of such a 
polygon, and, of course, there are many such 
polygons. Though, we are interested in the minimal 
such convex polygon with its edges containing the 
maximal possible number of nodes from set V . We 
shall refer to this particular polygon as the girding 
polygon for set V  and denote it by P = P(V ) . 

It follows that all vertices of polygon P(V )  are 
nodes from set V . Besides these vertices, polygon P  
may contain nodes from set V  as the interior points of 
its edges, whereas the rest of the nodes from set V  
are within the internal area of the polygon. In Figure 1 
we illustrate polygon P  for a problem instance of VRP 
with 30 customers and one depot.  

 

Figure 1: Polygon with 12 vertices and 19 nodes from its 
internal area. 

Before we describe our procedure for the 
construction of polygon P(V ) , we define special types 
of nodes from set V  that pertain to polygon P(V ) . 
These are the uppermost, lowermost, leftmost and 
rightmost points from V . Formally, we call a point in 
set V  with the maximum (minimum, respectively) y -
coordinate an uppermost (a lowermost, respectively) 
node. Likewise, we call a point in set V  with the 
maximum (minimum, respectively) x -coordinate a 
rightmost (a leftmost, respectively) node. 

We shall refer to these four types of nodes as 
extreme points in set V . From all the extreme points of 
the same type (if there are two or more such nodes), 
we call exterior nodes the two nodes with the maximum 
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and minimum co-coordinate, and the rest of the nodes 
the interior nodes of that type. The two exterior nodes 
are the endpoints of the corresponding edge on 
polygon P . In general, we may have more than two 
nodes from set V  lying on the same edge of polygon 
P , two exterior ones of which are endpoints of that 
edge. 

The next observation is straightforward. 

Observation 1 

All extreme points belong to polygon P , whereas all 
extreme points of the same type belong to the same 
edge of that polygon. In particular, the two edges 
containing all the uppermost and all the lowermost 
nodes are parallel to the x -axes, and the two edges 
containing all the rightmost and all the leftmost nodes 
are parallel to the y -axes.  

We use the following notation for the four 
distinguished extreme points. (1) v1  is the right exterior 
uppermost node (i.e., among all the uppermost nodes 
v1  has the maximum x -coordinate); (2) vl  is the 
lowest exterior leftmost node (i.e., among all the 
leftmost nodes vl  has the minimum y -coordinate); (3) 
vo  the right exterior lowermost node (i.e., among all the 
lowermost nodes, vo  has the minimum x -coordinate); 
(4) vr  is the lowest exterior rightmost node (i.e., among 
all the rightmost nodes vr  has the minimum y -
coordinate). 

The procedure POLYGON that forms the polygon 
P , first determines all the extreme points verifying the 
corresponding coordinates in the straightforward way. 
The construction of polygon P  goes on the following 
four stages (which are independent and can be carried 
out in parallel). 

At stage 1 the construction proceeds in the “right-to-
left” downward fashion that moves from vertex v1  
towards vertex vl  completing the upper left border of 
polygon P . At stage 2 the construction proceeds also 
in the “right-to-left” but upward fashion that moves from 
vertex vo  towards vertex vl  completing the lower left 
border of polygon P . At stage 3 the construction 
proceeds in the “left-to-right” upward fashion that 
moves from vertex vo  towards vertex vr  completing 
the lower right border of polygon P . At stage 4 the 
construction moves also in the “left-to-right” but 
downward fashion that moves from vertex v1  towards 
vertex vr  completing the upper right border of polygon 
P . Below we describe these stages in more details. 

At stage 1 (“right-to-left” downward) we add points 
to the left of the latest added so far point to polygon P , 
initially, to the left of vertex v1 . We first determine the 
next to v1  vertex v2  to the left of vertex v1  (i.e., 
x2 < x1 ) on the projected border of polygon P . v2  is 
the uppermost closest to v1  vertex on its left hand side. 
In other words, among all nodes in set V  with no-
larger than y1  y -coordinate and no-larger than x1  x -
coordinate, v2  has the maximum y -coordinate (note 
that by the definition of the initial node v1 , no other 
node in set V  may have a larger than y1  y -
coordinate). If it turns out that y2 = y1 , the 
corresponding edge of polygon P  (one containing 
nodes v1  and v2 ) is parallel to x -axes. The next point 
v3  on the border of polygon is similarly defined, where 

we restart now from node 2v  (replacing of node 1v ), 
which is now the next node in set V  with the maximum 
y -coordinate. If y3 = y2  then all three nodes v1, v2 , v3  
lie on the same edge of polygon P  and node v2  turns 
out to be an intermediate point on that edge, i.e., it is 
not a vertex of polygon P , but it belongs to its border. 
Observe that v1  is a vertex of polygon P , whereas 
whether v3  is a vertex of polygon P  or not, depends 
on whether for the next point v4 , y4  is equal to or is 
less than y3  (it cannot be more). 

The “right-to-left” downwards pass of stage 1 ends 
by adding the leftmost vertex (verices) (ones with the 
minimum x -coordinate) to polygon P ; if there are 
several such nodes in set V , polygon P  possesses 
an edge parallel to the y -axes containing all these 
nodes (Observation 1), which is the leftmost edge of 
the polygon. All of these nodes are successively added 
and stage 1 ends by adding the lowermost such node 
(one with the smallest y -coordinate), which we 
denoted by vl . 

Stage 4 works as stage 1 with the only difference 
that the construction here moves in the “left-to-right” 
(instead of “right-to-left”) downward fashion from vertex 
v1  now to vertex vr . In the description of stage 1 
above, we merely replace “left” with “right” and vertex 
vl  with vertex vr . 

At stage 2 (“right-to-left” upward) we add points to 
the left of the latest added so far point to polygon P , 
starting from vertex vo . We determine the next to vo  
vertex v!  to the left of vertex vo  on the projected 
border of polygon P . v!  is now the lowermost closest 
to v1  vertex on its left hand side. In other words, 
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among all nodes in set V  with no-smaller than oy  y -

coordinate and no-larger than ox  x -coordinate, !v  
has the minimum y -coordinate. As at stage 1, it may 
again turn out that y! = yo , in which case we have an 
edge in polygon P  parallel to x -axes. The next point 
on the projected border of polygon P  is similarly 
defined, where we restart now from node v!  (replacing 
of node vo ), which is now the next node in set V  with 
the minimum y -coordinate. Proceeding in this way, the 
construction at stage 2 ends by matching the latest 
added vertex with vertex vl  (by the construction, this 
event will clearly take the place). 

Stage 3 works as stage 2 with the only difference 
that the construction here moves in the “left-to-right” 
(instead of “right-to-left”) upward fashion from vertex vo  
now to vertex vr . In the description of stage 2 above, 
we merely replace “left” with “right” and vertex vl  with 
vertex vr . 

This completes the description of procedure 
POLYGON. It straightforwardly follows from the 
construction that the obtained polygon is convex and 
contains all the nodes from set V  either on its border 
or within it, and among all such polygons it is minimal. 
Hence, it is the girding polygon P(V ) . 

The brutal sequential time complexity of procedure 
POLYGON is O(n2 ) . Indeed, initially, the selection of 
each of the extreme nodes v1, vl , vo , vr  takes time 
O(n) . At all stages, the determination of every next 
added vertex takes also time O(n) , and since there are 
no more than n  added points to the constructed 
polygon, we get a brutal sequential overall time of 
O(n2 ) . 

Thus we have proved the following result.  

Theorem 1 

Procedure POLYGON creates the girding polygon 
P(V )  in brutal sequential time O(n2 ) .  

3. PHASE 2: THE PARTITION AND ROUTING 

In this section we describe how we form the k  
vehicle tours using the girding polygon P(V )  
constructed at phase 1. For the convenience, assume 
for now that the depot vd  is within the internal area of 
polygon P  (it normally shares the central area in 
between the rest of the nodes). 

3.1. Partition stage 

Let x  be any node on the borderline of polygon P . 
We define an auxiliary edge (vd , x)  and associate with 
it the corresponding vector in the 2-dimensional 
Euclidean space (will shall refer to both, the edge and 
the corresponding vector interchangeably). 

Denote by m  be the number of the nodes from set 
V  which are on the borderline of polygon P . 

An auxiliary edge (vd , x)  is called a separator edge 
if x !V . The m  separator edges partition the interior 
area of polygon P  into the m  corresponding triangle 
areas (see Figure 2). Every such triangle area is 
uniquely defined by two neighboring separator edges. 
In general, a pair of auxiliary edges define a triangle 
area. We shall specify a bit later how we determine the 
k  auxiliary edges that delineate the destiny k  triangle 
areas. 

Let the weight of an auxiliary edge (vd , x)  be the 
length of the corresponding vector in the 2-dimensional 
plane. 

 

Figure 2: Polygon of Figure 1 with separator edges 

Lemma 1  

Twice the minimal separator edge weight plus the 
length of the border of polygon P(V )  is a lower bound 
L(V )  on the optimal solution.  

Proof. Immediately follows from an easily seen 
observation that the above magnitude is the optimal 
tour length for the case k = 1  and for the subset of V  
containing only the nodes of polygon P  and the depot. 
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 As it is not difficult to see, the total length of a tour 
including a border node v !V  is at least 2w(vd , v) . 
Intuitively, it is reasonable to include in a tour that visits 
node v  also the nodes from the interior of polygon P  
lying “close-by” edge (vd , v)  and also “close-by” border 
node(s) of polygon P . If, for instance, we include in 
that tour i ! 1  neighboring border nodes of the polygon 
then the nodes from the corresponding i  triangle areas 
will be joined together in one unified triangle areas (one 
of the destiny k  subsets of set V ). 

For every triangle area, we define one or more 
auxiliary edges across which the tour(s) within that 
area will be generated. Some of the nodes from that 
area will be visited on the way from depot to a border 
node x , whereas the rest of them on the way back to 
the depot. We describe the construction in the following 
subsections. Before, we need some definitions. 

The number k , the length of edge (vd , x) , w(vd , x) , 
its “relative length” which we let to be the ratio of the 
average separator edge length (i.e., the sum of weights 
of all the m  separator edges divided by m ) and 
w(vd , v) , and the lower bound L(V )  from Lemma 1 (a 
magnitude, greater than the perimeter of polygon P ) 
are the parameters used in our definition of the 
closeness of two nodes. The magnitude b , our 
closeness measure, in one way or another takes into 
account these parameters (in practice, we try different 
kinds of combinations of these parameters for 
calculating the closeness measure b ). 

For a given auxiliary edge e , the b -close set of 
nodes is formed by all the nodes from set V  which are 
within the distance b  from vector e . We denote the b -
close set for an edge e  by B(e) . 

The density factor of an auxiliary edge e , ! (e)  as 
the number of nodes in set B(e)  divided by the length 
of the corresponding vector. We tend to direct our tours 
across the auxiliary edges with higher density factors. 
The total number of the auxiliary edges that we will 
create depends on the number k  (the total number of 
tours that we need to construct). 

If k > m  then triangle areas determined by 
neighboring separator edges might be joined together; 
if k < m  then an extra amount of auxiliary edges might 
be created within a single triangle area, as we describe 
in the next two subsections. 

3.1.1. Creating extra triangle areas for k > m  

When k > m  (the number of edges of polygon P  is 
less than k ), to organize k  tours, we create k ! m  

extra triangle areas by introducing extra k ! m  border 
points of polygon P . These border points give rise to 
new auxiliary edges, which, in turn, define extra triangle 
areas. 

The k ! m  extra auxiliary edges are selected within 
the most dance regions in the current triangle areas so 
that the formed edges will have the highest density 
factors. 

3.1.2. Unifying triangle areas for k < m  

The unification of different triangle areas for the 
case k < m  is accomplished by eliminating the m ! k  
separator edges with smallest density factors. As a 
result, we are left with k  triangle areas. 

3.2 Routing stage 

We describe now how we form the tour 
corresponding to a given a triangle area from one of 
the formed k  areas (as described in the previous 
section). Let v  and u  be the border points 
corresponding to that area, with auxiliary edges 
e = (vd , v)  and !e = (vd ,u) . 

The tour, roughly, is formed by two basic sub-tours 
determined by vectors e  and !e , correspondingly: the 
first one is directed from node vd  towards node v , and 
the second one from node u  towards node vd . Each of 
these sub-tours includes the (close-by) nodes from sets 
B(e)  and B( !e ) , correspondingly. 

We first describe how we form the sub-tour across 
vector e . For the commodity in this presentation, we 
assume that vector e  lies on the y -axes of the 
coordinate system and node vd  coincides with the 
origin (0,0)  (we rotate the whole polygon area by the 
necessary angle and shift, without altering any problem 
data). 

We need to create a sub-tour that includes nodes 
vd  and v  and all the rest of the (intermediate) nodes 
from set B(e) . This tour has a zigzag type trajectory 
and consists of a number of “slices”. 

Every slice defines a local tour on the left or right 
side of vector e  and is restricted by a fixed magnitude 
!  called the thickness factor, we let ! ="b , for some 
real ! > 0  (we normally let ! <1 ). Roughly, the 
thickness factor determines the amplitude within which 
the nodes will be included in the generated local tour. 
We define below such local tours. 
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Let y1  be the furthest point from node vd  in set 
B(e)  whose y -coordinate is at most !  more than that 
of node vd . If there is no such a point, i.e., the 
minimum y -coordinate of a job from set B(s) \ {vd }  is 
more than !  more than that of node vd , we 
(repeatedly) replace point vd  with the point (0, i! )  on 
the y -axes, for the minimum integer i , as long as that 
point remains within the area of polygon P  (i.e., it is on 
vector e ) until point y1  is determined (or point (0, i! )  
turns out to be outside of the the area of polygon P ). 
Denote the determined in this way point by !v . Without 
loss of generality and for the purpose of this 
description, assume node y1  has a positive x -
coordinate, i.e., it is on the right-hand side of vector e . 

The vector ( !v , y1)  forms the skeleton of the local 
tour from point !v  to node y1 , i.e., it is directed across 
that vector. Let !( "v , y1)  denote the set of nodes from 
B(e)  which are within the distance !  from vector 
( !v , y1)  on the same side of vector e . In a local partial 
tour defined by the former vector, all the nodes from set 
!( "v , y1)  are visited in the order of the closeness from 
node !v . In other words, if we let  i1, i2 ,…, il , il = y1 , be 
an enumeration of nodes in set !( "v , y1)  in the non-
decreasing order of their distances from node !v , then 
the node i1  is visited from node vd , then node i2  is 
visited from node i1 , and so on, node y1 = il  is visited 
from node il!1 . Note that the latest visited node in this 
local tour is y1  and that it included all the nodes in set 
B(e)  located below vector ( !v , y1) . 

Now we replace point !v  with the next point !!v  of 
the same form (0, i! )  and defined similarly as point !v , 
and carry out a similar construction. I.e., we determine 
the next furthest point y2  now from point !!v  with the 
y -coordinate no more than i!  (for the newly 
determined value of i ), form vector ((0, i! ), y2 )  and the 
next local tour (on the right or the left hand side of 
vector e , depending on the potion of point y2 ). 

At the stage in the above tour when the border node 
v  is reached, another local tour, determined by vector 
(v,u)  is formed, quite similarly as for vector e . Once 
node u  is included to that local tour, the sub-tour 
determined by vector !e  is similarly formed. The whole 
tour completes once the depot is again reached. 

Once all the k  triangle areas is processed as 
above, if all the nodes from set V  are included in one 
of the k  generated tours then our heuristic completes 

with the created solution. Otherwise, some of the 
formed tours are completed with the remained nodes at 
the successive iterations with modified values for 
parameters b  and ! . 

CONCLUDING REMARKS 

We have described a simple heuristic algorithm for 
the basic (uncapacitated) vehicle routing problem. 
Based on the proposed framework, more sophisticated 
heuristic algorithms might be derived due to its 
flexibility: the parameters of the heuristic can be 
calculated and defined in different ways (adapting, in 
particular, to the nature of the input problem instances). 
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